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Chapter 1

Regularization and Matrix Computation in
Numerical Polynomial Algebra

Zhonggang Zeng

Abstract Numerical polynomial algebra emerges as a growing field wdystin
recent years with a broad spectrum of applications and malbyst algorithms.
Among the challenges in solving polynomial algebra proldewth floating-point
arithmetic, difficulties frequently arise in regulariziilgposedness and handling
large matrices. We elaborate regularization principlesréformulating the ill-
posed algebraic problems, derive matrix computationragisi numerical polyno-
mial algebra, as well as subspace strategies that suladiamiprove computing
efficiency by reducing matrix sizes. Those strategies haealsuccessfully applied
to numerical polynomial algebra problems such as GCD, fation, multiplicity
structure and elimination.

Introduction

Accelerated by the advancement of computer algebra syst€as), symbolic
algebraic computation has enjoyed tremendous success giercadvent of the
Grobner basis and continues to be a driving force in contjputa commutative
algebra. The abundance of algorithms along with the depthbameadth of the
theories developed over the years for algebraic computatts a solid founda-
tion for numerical polynomial algebra, which emerges asédia growing field of
study in recently years. Pioneered by Li [57], Sommese [82]@hers, numerical
polynomial system solving based on the homotopy contipnatiethod has set the
standard in efficiency as well as robustness, and enterdabe ef expansion into
numerical algebraic geometry as a new field [81]. Meanwhilamerical polyno-
mial algebra emanating from fundamental numerical anslgsd numerical linear
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2 Z.Zeng

algebra has also thrived in theory and problem solving, asguted in Stetter’s re-
cently published textbook [84] and evidenced by healthyettgument of software
(cf. [86]).

In comparison to symbolic computation, numerical compaoitaand approxi-
mate solutions offer substantial advantages in many arehsame with drawbacks
in other aspects. Computing numerical solutions in mangsasay be inevitable
due to lack of alternatives, such as locating roots of a pmtyial with a degree five
or higher. Even in those cases where exact solutions arkablegiapproximate so-
lutions may make better sense and go deeper in revealindntrsécal nature. For a
simple example, the exact GCD (greatest common divisoh@pblynomial pair

_ _ 2 _
{f(x) = 3x3-9.2426¢+13.071x— 10 (1.1)

g(x) = 17321+ 246423 — 2.4495¢3 + 1.414% — 2

is a trivial polynomial u=1 in symbolic computation. However, its approximate
GCD ('=2.000006-1.414X+x? along with the verifiable residual provides more
penetrating information: The given polynomial pair is aytaistance (0000056
away from a polynomial pair havingu "as its exact GCD. The difference here
may mean a more desirable deblurred image restored by anxapte GCD [69]

or a meaningless blank image represented by the trivialtex@®. Furthermore,
numerical computation tends to be more efficient in bothagferand computing
time, and more suitable for large engineering problemsy@erced by the homo-
topy continuation method for solving polynomial systemplegal to kinematics (cf.
(82)).

Numerical polynomial algebra differs from symbolic comgitidn in many as-
pects. The problem data are expected to be inexact and thputation is car-
ried out with floating-point arithmetic. Accuracy and stabi which may not be
a concern in symbolic computation, become of paramount itapoe in develop-
ing numerical algorithms for solving polynomial problem&.classical algorithm
that is flawless in exact arithmetic, such as the Euclidegordéhm for computing
polynomial GCD, may be prohibitively impractical for nune computation and
vice versa.As a result, it is often necessary to develop numerical #lgyos from
scratch and to employ totally different strategies fronirtegmbolic cousins.

Even the meaning of “solution” may be in question and may ddpa the ob-
jective in problem solving. The exact GCu =1 in (1.1) is indisputable in
symbolic computation, while the meaning of the approxinta@D has evolved in
several formulations over the years (see the remag ip.2). The comparison be-
tween exact and approximate GCD is typical and common inbaége problems
where ill-posedness is often encountered and the soludianfinitely sensitive to
data perturbations. Numerical computation which, by regtseeks the exact solu-
tion of a nearby problem becomes unsuitable unless the garold regularized as
a well-posed one. As it turns out, the collections of ill-edgroblems form pejo-
rative manifolds of positive codimensions that entangbegbther with stratification
structures, as elaboratedijih.2, where a manifold is embeded in the closure of man-
ifolds of lower codimensions. Thus a tiny arbitrary pertatibn pushes the problem
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away from its residing manifold, losing the very structuféh@ solution. Dubbed as
the “three-strikes” principle for formulating an approxte solution and removing
ill-posedness, we summarize that the approximate solstionld be the exact solu-
tion of anearby problenresiding in the manifold of thenaximum codimensiand
having theminimum distancéo the given problem. Approximate solutions with
such a formulation become viable, attainable, and contiaudgth respect to data.

Numerical polynomial algebra can also be regarded as hawingerical linear
algebra as one of its cornerstones. Pioneered by Wilkir&8ln Golub [34], Kahan
[43] and many others around the same time of Buchbergerk ammGrobner basis
numerical linear algebra flourished since 1960s with wedldshed theories, algo-
rithms and software libraries for numerical matrix compiotas. One of the early
catalysts that contributed to the recent advances of ngalgrolynomial algebra is
the introduction of the singular value decomposition toypoimial computation by
Corless, Gianni, Trager and Watt [11] in 1995. As elaboratefl.3, polynomial
algebra problems in numerical computation lead to matrixgotation problems
such as least squares, eigenproblem and particularly, meatheank/kernel identifi-
cation. Theories, techniques and ideas accumulated inneahknear algebra are
rich resources for numerical polynomial algebra.

This paper surveys basic approaches and techniques inogewvglalgorithms
for numerical polynomial algebra, emphasizing on regaiag ill-posed algebraic
problems and employing matrix computation. The approaahdsechniques elab-
orated in this survey have been used in many algorithms withessful results and
implementations. As a growing field of study, theoreticalatte and algorithm de-
velopment are on-going and gradually evolving. Furtheeadement will continue
to emerge in the future.

1.1 Notation and preliminaries

1.1.1 Notation

The n dimensional complex vector space is denoted &Y, in which vectors
are column arrays denoted by boldface lower case lettefsasi@, u, v, etc,
with 0 being a zero vector whose dimension can be understood fremathtext.
Matrices are represented by upper case lettersAikand J, with C™" denoting
the vector space consists of atix n complex matrices. Notation§)" and (-)"
stand for the transpose and the Hermitian transpose, nasggcof the matrix or
vector ().

The ring of polynomials with complex coefficients in indetenates xi, ..., Xs
is denoted by C[xq,...,XsJ, or C[x] for x = (x1,...,%). A polynomial as a
function is denoted by a lower case letter, sdy v, or p1, etc. The collec-
tion of all the polynomials with a certain degree bound folamgector space over
C. Throughout this paper, if a letter (say) represents a polynomial, then either
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[f] orthe same letter in boldfaced. f) denotes its coefficient vector, where the
underlying vector space and its basis are clear from thesgant

1.1.2 Numerical rank and kernel

The fundamental difference between exact and numericalpatation can be
demonstrated in the meaning of the matrix rank. With exathtraetic used in sym-
bolic computation, a matrix is non-singular if and only # determinant is nonzero.
Such a characterization of being full rank, however, is ficaty meaningless in
numerical computation as shown in a simple example below.

Example 1.1.1. The polynomial division is equivalent to linear system sudyv
Finding the quotientq and the remainder of a polynomial f divided by g

satisfying f =g-q+r s, in fact, solving a linear systents {?] = f, where
f, q and r are vector representations df, q and r respectively, along with

a corresponding matrixG. For instance, letg(x) = x+ 10 and use the standard
monomial basis for the vector representationgofq and r. The matrix G is

1
10 1

G = 10 . (1.2)

1
101 (n+1)x(n+1)
where n is the degree off. The matrix G may appear benign with a full rank
and detG) = 1. However, its 2-norm distance to a singular matrix is lésmt
10™. Such a matrix with even a modest size, say= 15, behaves the same way
as a singular matrix in numerical computation. Conseqygeraund-off errors in
the order of hardware precision during synthetic divisian cesult in substantial
errors of magnitudeO(1) in the coefficients ofq and r (c.f. [98,§4.2.3]). The
numerical rank ofG should ben, not n+1 unlessn is small. O

Remark: Example 1.1.1 indicates that the Euclidean algorithm cahiglely
unreliable in numerical computation of the polynomial GCbcs it consists of
recursive polynomial division in the form of =g-q+r. Interestingly, polynomial
division in the form of f =g-q, or equivalently the polynomial division in the form
of f=g-q+r combined with an additional constraint= 0, is a stable least
squares problem. This can be seen from Example 1.1.1 byirdgtae last column
from matrix G. The resulting matrix possesses a near perfect conditiatbeu
(= 1) with its smallest singular value larger than 9. O

The condition of a matrix in numerical computation dependste distance to
the nearest rank-deficient matrices. Likewise,ibenerical rank(or approximate
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rank) of a matrix depends on the (exact) ranks of its nearhyicea. If a matrix A

can have an error of magnitud®, then the “worst” {.e.lowest rank) matrix within

a distancef dictates its numerical behavior. The numerical rankfofwithin 6,
denoted by rankg (A), is thus defined as the smallest rank of all matrices within a
distance 6 of A:

rankg (A) = ank (B) (1.3)

min
[B—All2<6
where rank (-) denotes the rank of matriX-) in exact sense. Naturally, the exact
kernel 2#(B) of B in(1.3)is taken as theumerical kernel_#(A) of A within
0:

Ho(A) = X (B) (1.4)
where HB—AH2 = k(@mink " HC_AHz'
ran =rank g

The numerical rank and numerical kernel of a mattixx C™" can equivalently
be defined using the singular value decomposition (SVD):[34]

01
02

A = ouvy +---+0onupvy;, = U vH (1.5)
On

where g1 > 0, > --- > 0, > 0 are the singular values oA, the matrices
U = [ug, - ,Un €C™™ and V = [vqg,--+,vy €C™"

are unitary matrices whose columns are left and right sarguéctors of A re-
spectively. The numerical rankank g (A) =k if and only if there are exactlyk
singular values ofA lie above the threshol®: oy > 6 > gi. 1, and the numerical
kernel J#5(A) = span{Vk.1,...,Vn}.

Computing the exact rankank (A) is an ill-posed problem in the sense that a
tiny perturbation can alter the rank completelyAf is of rank-deficient. As aresult,
the exact rank and kernel in general can not be computed iricahcomputation
since round-off errors are inevitable. By formulating nuiva rank and kernel
in (1.3) and (1.4) respectively, matrix rank-revealingagularizedas a well-posed
problem and becomes suitable for numerical computatiofaciythe singular value
decomposition is remarkably stable and well establishedimerical linear algebra.
The sensitivity of the numerical kernel can be measured byctndition number
01/0x by Wedin’s Theorem [92].

On the other hand, the standard singular value decomposkio be unnecessar-
ily costly to compute. The numerical rank/kernel compuatatn numerical polyno-
mial algebra often involves matrices of low numerical niid8. For those matrices,
numerical ranks and kernels can be computed efficientlygusispecialized rank-
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revealing method [59], which has become an indispensali@ooent of numerical
polynomial algebra algorithms that will be discussed latehis survey. The rank-
revealing method assumes the input matRx is in upper-triangular form without
loss of generality. Every matriXA has a QR decomposition [34h = QR and the
numerical kernel of A is identical to that of the upper-triangular matriR. The
following null vector finder is at the core of the numericatkarevealing method in
[59]:
set zp as a random vector
for j=1,2,--- do
solve R'x =zj.; with a forward substitution (1.6)
solve Ry =x with a backward substitution

- = X2
set zj = and g

Y = =2
[Iyll2 [Iyll2

The iteration in (1.6) produces sequencgs } and {z;} satisfying

inrrzoq = on, and J,Ii@zj = Vj
where g, and v, are the smallest singular value Af and the associated right
singular vector respectively. Each iterative step of trgoathm (1.6) requires a
forward substitution and a backward substitution on tridagmatrices R" and
R respectively. After finding a numerical null vectar of matrix R within 6,
insert a multiple ofz on top of R to form

¢ - [

We can continue to calculate a numerical null vectoof R within 6. If such a
Z exists, itis also a numerical null vector & orthogonaltoz [59]. By updating
the QR decomposition oR, we can apply the algorithm (1.6) again to firid An
orthonormal basis for the numerical kerngfp(A) can be obtained by continuing
this process.

Numerical rank can also be considered a generalizatioreafdhventional rank
since rank (A) = rankg (A) =k whenever < 6 < 0. A matrix A in practical
computation is usually known in a perturbed form= A+E where E is the
noise that can be expected to be small. lagt-) denote the j-th singular value
of the matrix (-). Itis known that [85, Chapter 1, Corollary 4.31]

[0j(A+E)—0j(A)] < [IEl2, j=1,---,n.

Consequently, the underlying (exact) ranluk (A) can be recovered aginkg (A)
aslong as
[El2 < 6 < ok(A)—[E|2.

In practical computation, the choice of the threshdd is problem dependent,
and may be difficult to decide in some cases. The generalsuleat 6 should
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be above the expected noise magnitu¢ig||, and below the smallest positive
(unknown) singular valuegy(A) .

The formulation of the numerical rank is intended to answerfollowing ques-
tion: How to find the rank of a matrix A that is under a small perturba®?
The answer is conditionalif the perturbation is sufficiently small, then the rank
of A can be recovered asankg (A) for a threshold slightly larger than the per-
turbation Numerical rank-revealing would become intractable whenwindow
ok(A)—||E|2> 6 > ||[E||» of choosing the threshold® disappears.

Consider Example 1.1.1 again. For any threshéldchosen within the interval
10" < 08 <9, the matrix G in (1.2) is of numerical rankn, or numerical nullity
1 within 6.

1.1.3 Thelinear and nonlinear least squares problems

Conventional solutions do not exist for an overdetermiiregdr system
AX = b

when the matrixA € C™" for m> n unless, for a zero probability, the vectbr
happens to be in the range &. Instead, thdeast squares solutiorx, becomes
the alternative that satisfies

|Ax. —b|[> = min|/Ay—b]3, (1.7)
yeCn

The least squares solution is unique; = A™b when A is of full rank, where
At = (A"A)IA" is thepseudo-inversef A.

Although solving Ax = b for its least squares solution is equivalent to solv-
ing the normal equation(A"A)x = A"b, there is a fundamental difference be-
tween symbolic computation and numerical approach frore.h&olving the nor-
mal equation directly may be a natural approach using exabhzetic. Numerical
computation, where accuracy is a concern, goes a step fubyhsolving the first
n equations of Rx = Q"b after obtaining the QR decompositioA = QR (c.f.
[34, §5.3]). Both approaches are equivalent in theory but not nsacim practical
computations. It is neither wise nor necessary to constutt solve the normal
equation as it is in numerical computation. On the other htredstandard numeri-
cal approach of solvingRx = Q" b is not attractive for symbolic computation due
to the square roots required in the QR decomposition.

Solving linear least squares solutions is essential in étieeamost basic opera-
tions in numerical polynomial algebra: Polynomial divisim floating-point arith-
metic. As discussed in Example 1.1.1, dividing a polynomial by g for the
quotient q and the remainder in the form of f =g-q+r can easily be ill-
conditioned. Consequently, the synthetic division is [dritively unstable in nu-
merical computation. However, if the remainder is known, $a= 0, then finding
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g inthe equationg-q= f is a stable linear least squares problem

Clga = f (1.8)

where C(g) is the convolution matrix [17] representing the linear sfammation
% . u—g-u between relevant polynomial vector spaces in which vectgrs
and f representq and f respectively. Equation (1.8) can be accurately solved
in numerical computation for its least squares solutiomjding the difficulty of
synthetic division. Thiseast squares divisioplays an indispensable role in many
works such as [30, 98, 102].

The least squares problem also arises in polynomial algettgd48, 98, 102]
and Example 1.1.3 below) in a nonlinear form of solving anrdeéermined system
of (nonlinear) equations

F(z) = b, zeC" (1.9)

for an analytic mappingF : C" — C™ with m> n. Similar to the linear case,
solving (1.9) requires seeking the least squares solutiordefined by

[Fz)-bl; = min|[Fy)-bl|;

The necessary condition faz, to be a (local or global) least squares solution is
J(2)"F(z) =0 (1.10)

where J(z) is the Jacobian ofF (z) (cf. [20, 98]). Although the global minimum
would be attractive theoretically, a local minimum is ugyiaufficient in practical
computations, and the local minimum is global if the resld{j&(z.) —b||2 is tiny.
In principle, the least squares solution of (1.9) can beeblyy many nonlinear
optimization methods. There is a distinct feature of therdetermined systems
arising from numerical polynomial algebra: The residyj&l(z,) —b||» is expected
to be small é.g.an approximate factorizatiorp&”l---pg" of f is expectedto
satisfy HpT1~~~pL”" - f|| < 1). As aresult, a simple optimization method, the
Gauss-Newton iteration, is particularly effective.

The Gauss-Newton iteration is given as follows: From anahiterate zg,

Zx = zk1—I(ze1) [F(zea) —b], k=1,2,---. (1.11)

The Gauss-Newton iteration is a natural generalizatioh@standard Newton iter-
ation. Detailed studies of the Gauss-Newton iteration @afobnd in some special
topic textbooks and articles, such as [18, 20, 63, 98].

The Gauss-Newton iteration is well defined in a neighborhobthe desired
(local or global) minimum pointz,. if the JacobianJ(z.) is injective (or, equiva-
lently, of nullity zero). The condition of being injectivenoJ(z..) is also essential
to ensure the local convergence of the Gauss-Newton berats asserted in the fol-
lowing lemma. Different from Newton'’s iteration for nornhatletermined systems,
however, the locality of the convergence condiastsrequirements: The initial iter-
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ate zp must be sufficiently near the least squares solutimn while the residual
|F(z.) —bl||2 must be sufficiently small.

Lemma 1.1.2.[98, Lemma2.8] Let Q c C™ be a bounded open convex set and
F:DcCC™— C" beanalyticinanopenset D Q. Let Jz) be the Jacobian
of F(z). Assumez, € Q is alocal least squares solution to systéh®). Let o

be the smallest singular value of(zl). Let d >0 be a constant such that

1[3(2)-3z)]" [F(z.)=b] ||, < &|z—z]|, forall zeQ.

Iz

If 5<o?, thenforany e (%,%), there existse >0 such thatforall zo € Q

with |zo—z.||]2 < €, the sequence{zi,2,,---} generated by the Gauss-Newton
iteration (1.11)is well defined insideQ, converges toz., and satisfies

2

cay 2, (1.12)

2+— HZK—Z*

< C(SHZ z
= g k * 20

HZ"“_Z* 2
where a > 0 is the upper bound of|J(z)[> on Q, and y> 0 is the Lipschitz
constantof Jz) in Q,namely,||J(z+h)—J(z)|2<y]/h] forall z,z+h € Q.

Notice that the constand in (1.12) is proportional to the residudF (z.) —bl|>.
Therefore, the smaller is this residual, the faster is thvemgence. When the least
squares solutionz, is a conventional solution, the residual will be zero and the
convergence is quadratic.

The conditionthatJ(z,) is injective also implies that the smallest singular value
omin(J(z.)) is strictly positive and provides an asymptotic sensifimiteasurement
(98]

1

Fz) = Omin(J(2+))

= P, (1.13)
for the least squares solution, .

The Gauss-Newton iteration is extensively applied in tigeaihms for numeri-
cal polynomial algebra in this survey. A generic Gauss-Newviteration module is
available in the software packag&paTools/Apalab  [99]. When formulating
the overdetermined systerf (z) = b, it is important to have enough equations to
ensureJ(z,) isinjective. Auxiliary equations are often needed for fhispose as
shown in the following example.

Example 1.1.3. Consider the polynomial factorization problem. For siroipyi of
the exposition, assumé can be factorized in three factors = u? v w¥ where
u, v and w are pairwise co-prime polynomials, and the objective iscampute
the coefficient vectorau, v and w of u, v and w respectively. Naturally, the
overdetermined systen®(u,v,w) =0 with

G(u,v,w) = [uivPw’ —f] (1.14)

needs to be solved, as pointed out in [48], whéf§ denotes the vector represen-
tation of the polynomial (-) in a given vector space. However, the Jacobian of
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G(u,v,w) in (1.14)is not injective sinceG(u,v,w) = G(cyu,cpv,c3w) as long as
cfcgcg’ =1. More constraints are therefore needed. A simple remedypieally
employ is to include extra equations”"u —1=b"v—1=0 with certain vectors
a and b of proper dimensions. The only restriction for choosiagand b is to
avoid a"u =Db"v =0 near the solutionu and v. They can be random vectors,
or more preferably the scalar multiples of the initial apgneationsto u and v
respectively. Then the Jacobial{u,v,w) of the analytic mapping

a'u—1
F(u,v,w) = [ bv—1 ]
[urvBwy - 1]

can be easily proved as injective at the desired solufiorv,w): Assume

I(u,v,w) [3} -0 (1.15)

r

where p, g and r are vector representations of polynomiats gq and r
respectively. From straightforward differentiations, nave

au AW p+ BudvAwr g+ yutvPwrlr = 0
a'’p = b"g=0.

Consequentlya pvw+ Bugw+ yuvr = 0, which leads top=g;u, q=gpv and
r =gsw since u, v,and w are pairwise co-prime. We further know thgi, g»
and gz must be constants from (1.15). Thefip=b"gq=0 anda"u=b"v=1
implies g1 =g>=0 andthusp=q=0. Furthermoreyuvr=0 implies r =0.
Therefore J(u,v,w) is injective. O

Appending extra equations as shown in Example 1.1.3 is &dypirategy for
making the Jacobian injective before applying the Gausstdie iteration. The
approaches of proving the injectiveness are also similamagnadifferent problems.

1.2 Formulation of the approximate solution

1.2.1 Theill-posed problem and the pejorative manifold

Hadamard characterized a problenvasl-posedf its solution satisfies existence,
uniqueness, and continuity with respect to data [36]. A [@mobwhose solution
lacks one of the three properties is termedllaposed problem In the current liter-
ature, the term ill-posed problem mainly refers to thoserwagolutions infinitely
sensitive to data perturbations[19]. Contrary to Hadarsanisbelief that ill-posed
problems are artificial and unsuitable for modeling phylssyatems, this type of
problems arise quite often in science and engineering etjns (cf.e.g.[37,
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§1.2]). As one of the main challenges for numerical compatatalgebraic prob-
lems are commonly ill-posed. Such examples are abundant:

e Univariate polynomial factorization: Under an arbitrary tiny perturbation, a
polynomial p(x) = (x—x1)™---(x—x)™ in expanded form loses those re-
peated factors corresponding to multiplicitieg 's higher than one, and multiple
roots turn into clusters of simple roots.

e Polynomial GCD: For a given pair of polynomialgp,q) under arbitrary per-
turbations, its GCD generically degrades to a trivial canspolynomial even if
(p,q) originally possesses a GCD of positive degree.

e Irreducible factorization of multivariate polynomial§or a multivariate polyno-
mial p= f/* f;2--. f* with nontrivial factors f1,..., fy, the factorizability is
lost and the polynomial becomes irreducible under an isfanibal but arbitrary
perturbation. The irreducible factorization of polynoimip is thus discontin-
uous, preventing a meaningful solution using conventiomethods at presence
of data perturbation.

e The matrix rank and kernelAs perhaps the most basic ill-posed problem (c.f.
§1.1.2), the rank and kernel of a matrix are discontinuouswhe matrix is rank-
deficient. A tiny perturbation will generically destroy tkernel entirely and
turns the matrix into a full-ranked one. The ill-posednefssiatrix rank/kernel
may be under-noticed because the singular value decorgpoisiavailable and
effective. The capability of identifying theumericalrank and kernel is one of
the very cornerstones of methods for solving ill-posed f@ois. This ill-posed
problem extends to solving a linear systeAx = b where the matrix A is
rank-deficient. A perturbation generically renders theéesysunsolvable in exact
sense even if the original system has infinitely many sahstio

e The matrix Jordan Canonical FormEFor an nxn matrix A, there is a Jordan
canonical decompositiol’A = XJX~1 where J is the block diagonal Jordan
matrix. When any of the Jordan block id is larger than %1, however, the
perturbed matrixA+ E generically loses all the non-trivial Jordan structure of
A, making it extremely difficult to compute the Jordan decosifen and the
underlying multiple eigenvalues.

In a seminal technical report [43] that has never been fdynpaiblished, Ka-
han studied three ill-posed problems (rank-deficient lirsgagtem, multiple roots
of polynomials and multiple eigenvalues of matrices) anthiga out that it may
be a misconception to consider ill-posed problems as hgpsitive to data pertur-
bations. The collection of those problems having solutimines common structure
forms what Kahan calls pejorative manifold An artificial perturbation pushes the
problem away from the manifold in which it originally resgland destroys its so-
lution structure. Kahan proves, however, the solution matybe sensitive at all if
the problem is perturbed with a restriction that it surfstia pejorative manifold it
belongs.
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Kahan's observation of pejorative manifolds extends tepilrposed problems
such as those in the following examples. Furthermore, itde®me known that
these manifolds may have a certatratificationstructure.

Example 1.2.1. In the vector spaceC™" for m> n, the collection of rankk
matrices forms a pejorative manifold

///kmm = {AeC™" ‘ rank (A) =k} .

Counting the dimension from the basis for the column sggaték) and the remain-
ing columns as linear combinations of the bggis— k) - k), it is easy to se¢58]
that the codimensioncodim(.#," ") = (m—Kk)(n—k). Those manifolds form a
stratification structure

My """ o oty =™

where () denotes the closure of the séf). O
Example 1.2.2. Associating a monic polynomial
PO = X* + P + PoX° + PaX+ Pa

of degree 4 with the coefficient vectqr= [py, p2, p3, pa] " € C*, the set of all poly-
nomials possessing a common factorization structure fafestorization mani-
fold. For instance

MN(13) = {(x—2)'(x-2)°|z.2€C, un+#2z}

with codimensioncodim(I1(1,3)) = 2. On the other hand, manifold (1,3) isin
the closure of manifold

M(1,1,2) = {(x—2)'(x—2)'(x—2)*|z,2,3€C, z #7fori#|}
with codim(I1(1,1,2)) =1 since

lim (x—z1)'(x—2) (x—22+€)* = (x—2)"(x—2)°

E—
Likewise M1(1,1,2) c M(1,1,1,1) = C*, and the five manifolds form stratifi-
cationas shown in Figure 1.1. Moreover, each manifold can be paraee in the
form of p=F(z). Forinstance,[1(1,3) is parametrized as

p = [x—2)(x—2)7,
namely,

P1 -3-7

P2 | _ 3% +3u2

p3 -z —3u7z

P4 2123
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The Jacobian of suchF(z) is injective in the corresponding manifold, ensuring
the local Lipschitz continuity of the root vectoz = [z;,2,]" with respect to the
coefficients p as well as the capability of applying the Gauss-Newton fii@nefor

refining the multiple roots [98]. O
codimension
3 2 | 1 0
nEe,2) !

r|(4)/ \
\ n(,3) /

n1,2) #»n(1111)

Fig. 1.1 Stratification of manifolds of degree 4 polynomials, with—" denoting “in the closure
of”

Example 1.2.3. Consider univariate polynomial pair&,q) of degreesm and n
respectively withm>n. Let QF’” be the collection of those pairs having GCDs
of a common degreé:

20" = {(p,q) € CX x CIX |
deg(p) =m, deg(q) =n, deg(ged (p,q)) =k} (1.16)

where ged (p,q) is the GCD of the polynomial pair(p,q). Every polynomial

pair (p,q) € .92'“” can be written asp=uv and q= uw where u is a monic

polynomial of degreek Thus it is easy to see thak? is a manifold of the
dimension k+ (m—k+1)+ (n—k+1), or codlmen5|onk exactly, and those
GCD manifolds form a stratification structure

AP C Pt = C™M2, (1.17)

Furthermore, each manifold can again be parametrized ifotheof u="F(z). In

fact,
u=[8] =[] = F@

with degu) =k, where z is a vector consists of the coefficients af v and w
exceptthe leading coefficient 1 af. Also similar to Example 1.2.2, the Jacobian of
F(z) is injective, ensuring the local Lipschitz continuity ¢fi,v,w) with respect

o (p,g) onthe manifold .92"‘” as well as the applicability of the Gauss-Newton
iteration for refinement. O

In summary, there exist similar geometric structures fonyrik-posed problems
in polynomial algebra such as multivariate GCD, multiveeiaquare-free factor-
ization, and multivariate irreducible factorization: Tbellection of the problems
sharing a common solution structure forms a pejorative folthi &2 that can be
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parametrized in the form ol = F(z) where the Jacobian oF (z) is injective on
the manifold &2. In addition, the pejorative manifolds form a stratificat&iructure
in which a manifold is in the closure of some other manifolti®wer codimension.
As a result, a problem may be near many manifolds of lowermedsion if it is
near (or resides in) one particular pejorative manifold.

When an ill-posed problem with inexact data is encounteretlibneeds to be
solved approximately using floating-point arithmetic, flret and foremost ques-
tion is the meaning of “solving the problem”. Computing th@et solution of an
inexact ill-posed problem, such as calculating the tricahstant GCD, does not
make much sense in practical applications. On the other,lmppoximate solu-
tions need to possess continuity. That is, the approxin@tgign must converge
to the exact solution if the problem noise approaches zeérapgears reasonable to
set the objective of solving an ill-posed problem numelycas follows:

Let P be a given problem that is a small perturbation from &pdsed prob-
lem P residing in a pejorative manifold/T with exact solution S. Find
an approximate solutionS of P in the sense thaS is the exact solution
of a certain problem P where P belongs to the same manifold? and

1SS =o(|P—Pl).

1.2.2 Thethree-strikes principle for removing ill-posedness

We shall use the univariate factorization problem in Exampl2.2 as a case
study for a rigorous formulation of the approximate solattbat removes the ill-
posedness. When the given polynomig is a small perturbation fromp =
(x—2z)(x—2)% that belongs to the factorization manifolfl (1,3) of codimen-
sion 2, the stratification structure as shown in Figure 1dicates thatp is also
near two other manifolds/1(1,1,2) and f1(1,1,1,1) of lower codimensions 1
and O respectively. Here the distana®p,1) of p from a manifold can be
naturally defined as

(p,11) = inf|lp—ql.

Actually, the polynomial p is generically closer to those “other” manifolds than it
is to the correct one:

Let u be the minimum of the distances betwe@n and manifolds1(2,2) and
[1(4) and assume the perturbation is sufficiently small such that

[p—pl < 3(p,M(1,3) < M.

Then the desired manifold7(1,3) stands out as tHeighest codimensiomanifold
among all the manifolds that intersect tife-neighborhood ofp for every 6 sat-
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isfying d(p,(1,3)) < 8 < u. Thatis, the key to identifying the correct manifold
is to seek the manifold of theighest codimensiowithin a proper thresholdd.

Upon identifying the pejorative manifold7(1,3), it is natural to look for p=
(x—21)(x—2%)% € M(1,3) that minimizes the distancgp— p||, and take the exact
factorization (x—Z;)(x—2)® of p as theapproximate factorizatiorof p.

Definition 1.2.4. Let p be a given polynomial of degreen and let 6 > 0.
Assume my+---+mg=n and M(my,...,my) is of the highest codimension
among all the factorization manifolds i€" that intersect thef -neighborhood of
p. Then the exact factorization op € I1(my,...,my) is called the approximate
factorization of p if

|p—f = _min__|p—q.
qel(my,--,my)

A theoretical elaboration of the univariate factorizatand its regularization is
presented in a recent paper [101]. Generally, solving goodled algebraic prob-
lem starts with formulating thapproximate solutiorfiollowing the “three-strikes”
principle below to remove the discontinuity:

Backward nearness. The approximate solution to the given (inexact) probl&m
is the exact solution of a nearby problef within a distance® of P.

Maximum codimension: The nearby problemP is in the closure 7T of the
pejorative manifold 1 of the highest codimension among all the pejorative
manifolds intersecting thed -neighborhood of the given problerB.

Minimum distance: The nearby problenP is the nearest point in the closui@
of I to the given problemP

Based on these principles, ta@proximate GCDof a polynomial pair can be
defined similarly using the notation in Example 1.2.3.

Definition 1.2.5.[96] Let (p,q) be a given polynomial pair of degreen and n
respectively, and le > 0 be a given GCD threshold. Assunkeis the maximum
codimension among all the GCD manifold®y™", 2™",..., Z3" embedded in

C™"+2 that intersect thed -neighborhood of(p,q):

k = max codim( ;™)
5((p.a). 27" <6

Then the exact GCD of(f,d) € 2" is called the approximate GCD ofp,q)
within 6 if

[(p.a)— (RO = min_/(p,a)—(f.9). (1.18)
(f.9 ez’

Remark: The univariate GCD is the first ill-posed problem in numdrica
polynomial algebra that has been going through rigorousm@ibations. In 1985,
Schonhage [77] proposed thaasi-GCDfor univariate polynomials in a definition
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requiring only the backward nearness. Schonhage alsonassthe given polyno-
mial pair is inexact but arbitrarily precise. Similar forkations are later used in
[14, 30, 39, 67, 68, 72] with some variations. In 1995, Car|&ianni, Trager and
Watt [11] first noticed the importance of the “highest derequirement of the ap-
proximate GCD in addition to Schdnhage’s notion. This isgraentis also adopted
in [24]. In the same paper [11], Corless et al. also suggedtiisg the minimum
distance. In 1996/1998 Karmarkar and Lakshman [52, 53] fideited two numer-
ical GCD problems: “The nearest GCD problem” and the “higltegree approx-
imate common divisor problem” in detail, with the latter sifiging requirements
of backward nearness, highest degree, and minimum distartee formulation in
Definition 1.2.5 differs somewhat with Karmarkar-LakshrisanThe polynomial
pair (f,§) is on theclosureof the manifold of highest degree polynomial pairs
and not necessarily monic. There is a different type of nicaeGCD formula-
tion: The “nearest GCD problem”. Originated by Karmarkad aakshman [53, p.
654], this problem seeks the nearest polynomial pairs gessgan exact nontriv-
ial GCD. Kaltofen, Yang and zhi (ck.g.[49, 50]) generalized this formulation:
Given a polynomial pair(p,q) and an integerk > 0, find the polynomial pair
(p,§) thatis nearestfrom(p,q) such thatthe (exact) GCD off,§) is of degree
k or higher. This problem is equivalent to the constrainedmiiation (1.18) as
a stand-alone problem with no need to specify a toleraficer to maximize the
manifold codimension. O

In a straightforward verification, the formulation of themerical kernel of a
matrix in §1.1.2 conforms with the “three-strikes” principle. We canrhulate the
approximate multivariate GCD, the approximate square-fagtorization, the ap-
proximate irreducible factorization, the approximateddor Canonical Form and
other ill-posed problems the same way as and Definition B2d4Definition 1.2.5
according to the principles of backward nearness, maximagimeension and min-
imum distance.

Computing the approximate solution as formulated abovelves identification
of the pejorative manifold of the highest codimension witttie given threshold
as well as solving a least squares problem to obtain the mimimlistance. Algo-
rithms can be developed using a two-staged approach: Rjnbdenmanifold with
matrix computation, followed by applying the Gauss-Newiteration to obtain the
approximate solution.

Example 1.2.6. The effectiveness of this formulation and the robustnesiseofor-
responding two-staged algorithms can be illustrated bythgnomial factorization
problem for

p(x) = x?%0— 400x%% + 70500198 +- . .. + 2.0412691403533a1 07 X1 O°

—3.55467815448396L0°° X0 + . . . + 1.261349023419937.0°° X° (1.19)

—1.977831229290266.0° X + 1.541167191654753.0*°
~ (x—1)%(x— 2)%0(x — 3)40(x — 4)°
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whose coefficients are rounded to hardware precision. A ihgovithmuvFACTOR
[99] designed for computing the approximate factorization otgphe precise fac-
torization structure and accurate factors within a thriesh® = 1019, along with
error estimates and a sensitivity measurement. This rissaibubstantial improve-
ment over the previous algorithmMTROOT[97, 98] which is limited to extracting
factors of multiplicity under 30. In contrast, standard haets like Matlab function
roots output scattered root clusters, as shown in Figure 1.2.2.

>> [F,res,cond] = uvfactor(f,1e-10);

THE CONDITION NUMBER: 2.57705

THE BACKWARD ERROR: 7.62e-016

THE ESTIMATED FORWARD ROOT ERROR: 3.93e-015
FACTORS

4.000000000000008 )"20
2.999999999999994 ) 40
2.000000000000002 )"60
1.000000000000000 )"80

X X X X
[

(
(
(
(

imaginary part

Fig. 1.2 Matlab results for the polynomial (1.19)

O

Pejorative manifolds in numerical polynomial algebra céiarobe parametrized
in the form of u = F(z) with injective Jacobians, as shown in previous examples.
In such cases, itis our conjecture that the approximateisaltormulated based on
backward nearness, maximum codimension and minimum distenwell-posed
in the following sense: If the given probler® is a perturbation from an (exact)
problem P with sufficiently small error €, then there is an upper bound on
the threshold8. Aslong as 8 is chosenin the intervale, i), thereis a unique
approximate solutiorS of P within all such 8, and the solutionS is continuous
with respect to the problenP. Moreover, the approximate solutio8 converges
to the exact solutionS of P if P approachesto® with

Is=s| = o([[P=P[)-



18 Z.Zeng

1.3 Matrix computation arising in polynomial algebra

As Stetter points out in [84] and in the title of [83], matriigenproblem is at the
heart of polynomial system solving. Furthermore, matrixnpoitation problems
such as least squares and numerical rank/kernel computto arise frequently
and naturally in polynomial algebra. We shall survey therapimate GCD, fac-
torization, multiplicity structure and elimination praohs in this section and derive
related matrix computation problems.

1.3.1 Approximate GCD

Given a polynomial pair(p,q) € C[x] x C[x] of degreesm and n, respectively,
with

P(X) = po+ piX+---+ pmx™
ax) = Qo+quX+---+gnX",
we can write
p = uv and g = uw

where u= gcd (p,q) isthe GCD along with cofactors and w. Then

w
p-w—q-v = [p, q][_v} = 0 (1.20)
That is, the polynomial pair(v,w) belongs to the kernel’# (£, q4) of the linear
transformation

Lpq 1 (1,s) — p-s—q-r. (1.21)

Moreover, it is clear that the kernel#’ (£} q) is spanned by polynomial pairs in
the set { (X)v, xlw) | j =0,1,---}.
The classical Sylvester matrix

n m
—_———
Po Yo
P o
Spa) = | .. - (1.22)
- - Po - 0o

Pm Pr Oh qu
P @
is the matrix representation of the linear transformati#f 4 in (1.21) restricted in

the domain {(r,s) | eg(r) <n, deg(s) < m}. It becomes clear tha§(p,q) has a
nullity equals to k = deg(u) since the kernel of the restricted,, q is spanned by
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{(v,w), (xv,xw), ..., (XL, xlw)}. Consequently, the (exact) GCD structure is
represented as the nullity of the Sylvester matrix:

deg (ged (p,Q)) = nullity (S(p,q)).

For the problem of thapproximateGCD, the polynomial pair(p,q) is consid-
ered a perturbation from(p,q) residing in the GCD manifold?/"li“*” (cf. Exam-
ple 1.2.3in§1.2.1). Then

S(p,Q) = S(f),(ﬁ)—i—S(p— ﬁvq_q)

Namely, the Sylvester matrix§(p,q) is near S(p,§) of nullity k with a distance
|S(p— P.a—G)|]2, and identifying the maximum codimension manifolé?,™"
becomes thaumericalrank/kernel problem of the Sylvester matrix.

After identifying the degreek of the approximate GCD, one can further restrict
the domain of the linear transformatiay, 4 as

{(r,s) | deg(r) <m—k, deg(s) < n—k}.
The corresponding Sylvester submatrix

n—k+1 m—k+1

—N— ——

Po Yo

P o

spa) = | ..
- Po Y

Pm Pt Oh 01

P o
has a numerical kernel of dimension one and the coefficiehtiseocofactors v
and w can be obtained approximately from the lone basis vectdiohumerical

kernel:
A (K(p,a) = PH—[{%H}

An estimateof the coefficients of the approximate GCD can then be obtained by
solving for the least squares solutiam in the linear systemu-v = f instead of
the unstable synthetic division.

The approximate GCD computed via numerical kernel and fifesest squares
alone may not satisfy the minimum distance requirement. aCleerracy of the com-
puted GCD depends on the numerical condition of the Sylvestematrix S(p,q),
while the GCD sensitivity measured from (1.13) can be mudithier. Therefore,
the above matrix computation serves as stage | of the appet&i GCD finding.
The Gauss-Newton iteration (c§1.1.3) is needed to ensure the highest attainable
accuracy.

For a simple example [96], consider the polynomial pair
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f(x) = X" — 99999999999K° +-X° — 99999999999%* +-X3 4 99999999999K° + X — 999999999999
gx) =X -3 x>+ 2% +x* —2x+2

possessing an exact GCD ag4(f,g) = x> + 1. Matrix computation alone can
only produce u~ x? +0.99992 with four-digit accuracy, while the Gauss-Newton
iteration attains the solution with a high accuracy neadWare precision. The
GCD condition number 3.55 shows the approximate GCD is nidigee at all, but
the kernel sensitivity for the Sylvester matrix is quitethige 10%2).

The upper-bound of the distance to rank-deficiency for tHeeSyer matrix

[S(p—p.a—a)l2 < [IS(p—p.a-09)r
= \/nllp-pl3+mja—al3 = e,

where ||- || denotes the Frobenius norm [32.3] of a matrix. However, rank-
deficiency within the above threshol@ is only the necessary condition for the
given (p,q) to be near a GCD manifold. The converse is not true. This is an-
other reason why the iterative refinement is needed as Stdgedomputing the
minimum distance and certifying the approximate GCD.

There is also a different approach for GCD computation [3850, 104]: Com-
puting displacement polynomialdp and Aq such that the Sylvester matrix (or
submatrix) S(p+Ap,q+ Aq) has a specified nullity. This approach leads to a
total least squares problem with special structures. Tppsaach may have an ad-
vantage when there is a large distance frqmq) to the GCD manifold beyond
the convergence domain of the Gauss-Newton iteration,tahdaretically seeks a
global minimum in comparison with the local minimum of theuSa-Newton itera-
tion. An apparent disadvantage of this approach is thasitlgect to the sensitivity
of the matrix kernel, not the actual GCD condition.

Both approaches can extend to multivariate GCD in a stritighiaird general-
ization. However, the matrix sizes may become huge whenuhger of indeter-
minates increases, and it may become necessary to redwseedizes for the con-
sideration of both storage and computing time. A subspaategly for this purpose
shall be discussed later §1.4.2.

1.3.2 The multiplicity structure

For a polynomial ideal (or system) = (f1, f2..., fi) C C[x1,...,Xs] with an iso-

lated zeroX = (%Xg,...,Xs), the study on the multiplicity ofl at X traces back to
Newton'’s time with evolving formulations [26, pp. 127-1P8), 64, 84]. Several
computing methods for identifying the multiplicity havedmeproposed in the liter-
ature, such as [54, 62, 65, 88] and more recently in [6, 17, 8#re we elaborate
the dual basis approach that can be directly adapted to meahkernel computa-
tion. This approach is originated by Macaulay [60] in 1916 asformulated by
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Grobner in 1939. For that reason it is also (somewhat irgpgately) referred to
as the Grobner duality [6431.3].
A univariate polynomial f(x) has an m-fold zero X if

fx) = /(8 = - = f{™(R)=0 and f™(R) £0.

The Macaulay/Grobner duality can be considered a gematah of this multiplic-
ity to multivariate cases using partial differentiatiométionals.
For anindex arrayj = [j1,---, js] € N® of non-negative integers, denote

X — Xil coxdsand (x—y)P = (xa—y1)lte (xs—ye) s
Define a (differential) monomial functional & € C5 as
d[X]: C[x] — C, where g[X](p) = (g p)(X) forany pe C[x].
Here, the differentiation operator

1 glit+is
0 = 0j..j; = axil---xés = W dxil...dxés. (1.23)

Namely, the monomial functionalj;[X] applying to a polynomialp equals the
partial derivative g, of p evaluated atX. We may used, for g;[X] when

the zero X is clear from context. A (differential) functional at € C® is a linear
combination of thosed; [X]’s. The collection of all functionals at the zer® that

vanish on the entire ideal forms a vector spaceZx(l) called thedual spaceof

| at X

Z(l) = {c_je%scjaj[ﬁ]‘c(f)_o, forallfel} (1.24)

where ¢ € C forall j € N°. The dimension of the dual spacéx(l) is the
multiplicity of the zerox totheideall. The dual space itself forms the multiplicity
structure of | at X.

For example, a univariate polynomigd having an m-fold zero X if and only
if the dual space of the idealp) at X is spanned by functional®y, ¢, ...,
Om1. Theideal | = (x3, x4x; +x3) has a zero(0,0) of multiplicity 12 with the
dual space spanned by [17]

1 2 3 2 2 1 1

~~ —— ——— —— ——— —— —
0oo; 010, o1, G20, 011, oz, 012, o3, F13, Joa— F21, Oos— 022, Oos— 023 (1.25)

and Hilbert function{1,2,3,2,2,1,1,0,---} as a partition of the multiplicity 12.

The most crucial requirement for the dual space isctheedness conditior-or
¢ to be a functional in the dual spacé&x(l), notonly c(f;) =---=c(fi) =0,
but also ¢(pfi) =0 for all polynomial p € C[x] andfor i=1,...,t. Since all
differential functionals are linear, the closedness ctimdican be simplified to the
system of linear equations
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Z ko [X (x=%)fi) = 0 (1.26)
keNs, [k|<a
for jeN® j<k, andi€{1,...,s}.

in the coefficientsc;’s for sufficiently large a € N.
For each a € N, the equations in (1.26) can be expressed as a homogeneous
linear system in matrix form
SC =0

where S, is the Macaulay matrix of orderar, and each functional in the basis
for the dual space corresponds to a null vectorSyf andvice versa.The Hilbert
function

H(0) = 1,
H(a) = nullity (Sy ) — nullity (Sy-1) for a=1,2,....

The (approximate) dual basis can be obtained by computa(ntimerical) kernels
of &, S, ... untilreachingthea where the Hilbert functionH (a) =0 [17].
The algorithm based on the above analysis and matrix keomepatation is im-
plemented as a computational routineuMIPLICITY STRUCTURE N the software
package &RATooLs [99]. The algorithm is also applied to identifying the local
dimension of algebraic sets [3] as part of the software pgelBERTINI [4].

1.3.3 Numerical elimination

Numerical elimination with approximate data arises in mapplications such as
kinematics [16, 21, 61, 87, 91, 90], and computational lgglohemistry [23, 25].
Numerical elimination methods have been studied in mangrispsuch as [1, 2,
21, 22, 42, 61, 70, 87, 90, 91]. The main strategy for the iejstlimination ap-
proaches is using various resultants [32] whose computaéquires calculating
determinants of polynomial matrices. There are formidablstacles for calculat-
ing resultants using floating point arithmetic since deteamt computation can be
inefficient and unstable. There is a new approach [95] thaitlawesultant calcula-
tion and transforms the elimination to a problem of matrixw&ernel computation.

Consider the ringC[x,y] of complex polynomialsin variableg and y, where
X is a single scalar variable angg may be either a scalar variable or a vector of
variables. For polynomials,g € C[x,y], there exist polynomialgp and g such
that

fp+gg = h
belongs to the first elimination idealf,g) NC[y] of f and g, unless(f,g) has
a GCD with positive degree ix. We wish to calculatep, g and h with floating
point arithmetic. Since f p+gqg=h e CJy|], there is an obvious homogeneous
equation



1 Regularization and Matrix Computation in Numerical Pagmal Algebra 23

0 0 0 0 0
E((prrgq) = [&Hf-&} p+[&g+g-&]q = 0. (1.27)

which leads to a simple strategy: Finding a polynomigd+gq in the elimination
ideal (f,g)NCJy] is equivalent to computing the kernel? (L) of the linear
transformation

Lo : (p.g) — [j—xf+f~;—x, %g+g~%} m (1.28)
in the vector spaceP" of polynomial pairs p and q with degree n or less.
With proper choices of bases for the polynomial vector spaite linear transfor-
mation L, induces arelimination matrix M, where the rank-revealing method
elaborated ir31.1.2 produces the polynomidl = f p+gq in the elimination ideal.
The elimination algorithm based on matrix kernel compotatian be outlined be-
low with a test version implemented inPATOOLS [99] as computational routine
POLYNOMIAL ELIMINATE .

For n=12--- do
Update elimination matrix Mn
If M, is rank deficient then
extract (p,g) from its kernel, break,
end if
end do

The method can be generalized to eliminating more than orgblas from sev-
eral polynomials and, combined with numerical multivagi&CD, can be applied
to solving polynomial systems for solution sets of positiu@ensions [95].

1.3.4 Approximateirreducible factorization

Computing the approximate irreducible factorization ofatimariate polynomial is
the first problem listed in “challenges in symbolic compiatat [44] by Kaltofen.
The first numerical algorithm with an implementation is deped by Sommese,
Verschelde and Wampler [78, 79, 80]. Many authors studiegtbblem and pro-
posed different approaches[8, 7, 10, 12, 13, 27, 28, 40,3154, 75, 76]. In 2003,
Gao [29] proposed a hybrid algorithm and later adapted itragwaerical algorithm
[30, 46, 48] along with Kaltofen, May, Yang and Zhi. Here wal®rate the strate-
gies involved in numerical irreducible factorization frahe perspective of matrix
computation.

The collection of polynomials sharing the structure ofdueible factorization
Pt paZ -+ pe¥ forms a factorization manifold which we denote Bk, - ¥, Where
n; isthe degree ofp; for j=1,--- k. Namely

e = {prtpy?---pe | deg(pj) =n; forj=1,... .k}
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For simplicity of exposition, consider the manifold!'lnll’%,’zln3 where polynomials

are square-free in two variableg and y with three factors. An approximate
square-free factorization algorithm is implemented iPnAOOLS[99] as a compu-
tational routing SUAREFREEFACTOR which is a recursive application of approxi-
mate GCD computation [102].

The first task of factorization is to identify the reducibjliof the polynomial,
the number of factors, and the degrees of each factor. Thed&uppproach[71]
for reducibility detection is very effective and can be Basplained using the

differential identity
9 (k) _ 9(k
oy\ f ) — ox\f

for any function f. For a given polynomial f = p-q-r of bidegree [m,n],
applying this identity to the first factop yields £ (& : ﬂ) = 4 (ﬂ : —'r) ,
namely

0 (px-ar\ _ 9 (pyqr
oy f - ox f '

The same manipulation on the remaining factarsand r reveals that the differ-

ential equation
9. (9) _ 9(h
oy \ f) — ox\f

in the unknown polynomial pair(g,h) has three linearly independent solutions

(g.h) = (pxar, pyar), (Por, payr), or (park, pPary).

From this observation, it can be seen that the linear tramsftion

Zi:(gh) — fz{aiy (%)_;_x(?ﬂ

= [f-d—oflg—[f -d—df]h (1.29)

has a kernel whose dimension is identical to the numberedircible factors of f
if we restrict the domain of.#; to those g and h of bidegreesim—1,n] and
[m,n—1] respectively. As a result, the reducibility and the numBderreducible
factors in f can be identified by computing the nullity of the Ruppert nxatt ¢
corresponding to the linear transformatio®s with a restricted domain. When
the polynomial f is inexact using floating-point arithmetic, the reductipildenti-
fication becomes numerical kernel problem.

Moreover, a vector in the numerical kerne¥yp (L) selected at random corre-
sponds to polynomials

g = A1pxar—+A2par + Azpary
h = A1pyar+Azpqyr + Aspqry

with undetermined constantd;, A, and Az. From f = pqgr and
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g—AMfx = pl(A2—A1)axr + (A3 — Ar)an,

we have identities associated with the unknowyis

p = ged(f, g—A1fy)
q = ged(f, g—A2fy) (1.30)
r = ged(f, g—Asfy)

Select complex numberg &nd y at random and consider univariate polynomials
p(x,y) and p(Xy) in (1.30). Applying the nullity count of the Sylvester matri
(1.22) elaborated if1.3.1 yields that the Sylvester matrices

S(f(X,y), g(xvy)_)‘le(va)) and S(f()’{vy)v g()z,y)—/\lfx()’{,y))

are of nullities identical to the degreesy, (p) and z{egy(p) respectively. The un-
known value of A; then becomes the generalized eigenvalue of the matrix Igenci
in the form of A— AB:

S(f(x.9), 9(x.¥)) —AS(0, fx(x.9)) (1.31)

and
S(f(&y), 9(%y)) —AS(0, fx(%,y)). (1.32)

From the identities in (1.30), both pencils have the samersigluesA;, A, and
A3 of geometric multiplicities identical to the degreegy, (p), deg,(q) and
deg,(r) respectively for the pencil (1.31) and to the degregg, (p), deg,(q)
and cfegy(l’) respectively for the pencil (1.32). As a result, finding thrkimown
constantsA;’s in (1.30) and degree structures of the irreducible factpr q and
r becomes generalized eigenvalue problem of matrix pemc{t.81)—(1.32).

Computing eigenvalues with nontrivial multiplicities hasen a challenge in
numerical linear algebra. With new techniques developgd®3] on computing
the Jordan Canonical Form along with the known eigen-airecof the pencils
in (1.31)-(1.32), their generalized eigenvalues and milidities can be computed
efficiently and accurately in floating-point arithmetic avié the polynomials are
inexact.

In summary, Stage | of the numerical irreducible factoi@atcan be accom-
plished with a sequence of matrix computations:

(a) Finding the numerical kernel of the Ruppert matrix by nimatank/kernel com-
putation; followed by

(b) solving the generalized eigenproblem of pencils in 1)-@.32) to obtain the
degrees of the irreducible factors and values\gfs; and concluded with

(c) computing approximate GCDs in (1.30) to obtain apprations to the irre-
ducible factors.

This stage of the computation identifies the maximum codsimenfactorization
manifold.
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In Stage 11, the approximations of the factors obtained ag8tl are used as the
initial iterate for the Gauss-Newton iteration (1.11) apglon the overdetermined
system F(u,v,w) =0 where

atu-1
F(u,v,w) = [ bHv—1 }
[

uvw— f]]

The Jacobian ofF is injective (cf. Example 1.1.3 if1.1.3, not without the aux-
iliary equations a"u = b"v = 1) at the solution (p,q,r), ensuring the Gauss-
Newton iteration to be locally convergent.

1.4 A subspace strategy for efficient matrix computations

1.4.1 The closedness subspace for multiplicity matrices

The Macaulay matrixS, for the homogeneous system (1.26) can be undesirably
large when a increases. For example, consider the benchmark problem KSS
system [17, 54] ofn x n

n
fi(Xe, X)) =X + Y xv—2x-n+1, for j=1,....n (1.33)
v=1

for multiplicity computation at the zer&k = (1,...,1). The largest Macaulay ma-
trix required is 1201% 3432 for n=7 to obtain the multiplicity 64, and the
matrix size reaches 10296024310 for n=8 for identifying the multiplic-
ity 128, exceeding the memory capacity of today’s desktagqel computers.
Therefore, reducing the size of the multiplicity matricesef paramountimportance.

The key idea, which is originated by Stetter and Thallin@dr, B8], is to employ
the closedness condition that can be rephrased in the fioljpemma.

Lemma 1.4.1.[84, Theorem 8.36]Let | € C[xy,...,Xs] be a polynomial ideal
and let Zx(l) be its dual space at an isolated zer®. Then every functional
ce Z(1) satisfies g(c) € Z(l) forall oge{1,...,s} where g isthelinear

anti-differentiation operator defined by

R - 0, if jo=0
So(9j..s[X]) = {‘91’1...1’5[*]’ otherwise

with j, =jo—1 and |=ji for ie{1,-- s}\{o}.

For example, the functionadps — d>3 belongs to the dual spac€(l) spanned
by the functionals in (1.25) implies
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S1(dos—d23) = 0—013
$(0og— 023) = dos— 022

are both in (1), as shown in (1.25). This property leads to the closedness
subspace strategy: After obtaining the dual subspace

28 = (1) N span{ [ | li| < a -1}

of order a —1, the additional basis functionals in the dual subspaeg(l) of
order a can be found in thelosedness subspace

() = {jEN;Sacj(aj[X]‘sa(c)e@;"l(l), a:l,...,s}, (1.34)

of order a. An algorithm for computing the bases for closedness sudesplaave
been developed in [100] using a sequence of numerical keameputation involv-
ing matrices of much smaller sizes. L€tp,...,@n} form a basis for the closed-
ness subspac&y (1). Then the functionals in the dual subspagg (1) can be
expressed in the form olu1gn + - - + un@n and can be computed by solving the
homogeneous linear system

wa(fi)+---+um@n(fi) = 0, for i=1,.--t (1.35)

where fq,...,f; are generators for the ideal. In comparison with the linear
system (1.26), the system (1.35) consists of a fixed nunthefequations. Since
the solution space of (1.35) is isomorphic to the dual subspal (1), the number
m of unknowns u;’s is bounded by

m < dim(Z5(1)) +t.

The process of identifying the closedness subspag¥|) and finding dual basis
functionals can be illustrated in the following example.

Example 1.4.2. Use the dual basis in (1.25) as an example. To identify theedo
ness subspace”g‘(l) after obtaining the dull subspace and the closedness stdspa
of order 3

28(1) = span{doo, J10, do1, 020, 011, Jo2, F12, G0}
a(1) = span{doo, d10, Jo1, 20, 011, Bo2, O30, 021, 12, o3}

The monomial functionalsd,z, dz1, and dag can be excluded since,(dz2) =
s1(d31) = 021 and s1(d40) = d30 are not in the monomial support (@g(l). As
a result, we have

G5(1) C span{doo, A0, o1, G20, 011, G0, P30, F21, O12, Oo3, Goa, 013}

and every functional ingg (1) can be written as
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© = Y1000+ Y2010+ Y3do1+ - - - + V10004 + V11013

The closedness conditions (¢),s(¢) € 23(1) become

Y1000+ Y3010+ Y4001+ Y6020+ Y7011+ Y8002+ 11003
= N10oo+ N2010+ - -+ Ngdo3

Y2000+ Y4010+ Y6001 + Y7020+ Y8011+ Y0002+ V10003 + V11012
= N90oo+ N10d10+ - - -+ N16d03

These equations lead to

[yl7 Vo, ---aVll]T = [nla ’791 ’721 ’731 nlla ’741 ’751 ’761 ’7147 ’7167 ’78]T (136)

along with

Ya=N3="Nw, ¥7r="Ns="N12, ¥8="Ne=1N13, Yi1=Ng =115 N7=0.

Consequently, we have a system of homogeneous equations
N3—Nwo = Ns—Ni2 = Ne—M3 = Ng—Nis = N7 = 0. (1.37)

Since a basis forg3(l) is already obtained, we need only additional basis func-
tionals in €3 (1) by requiring

eLE). (1.38)
In general, systems of equationsin (1.36), (1.37) and jL&8be written in matrix
forms

)21 n m n
: = Al |, B|: =0, and C| : =0
Ym NMn Nn NMn
respectively. Thus the problem of identifying the closedngubspace becomes the
(numerical) kernel problem of the matri%ﬁ} , from which we obtain

m H1 i H1
: = N| ¢ |, andthus| : = AN| :
MNn Mk Ym 2%
In this example,)y =--- = w=0 and
2] - il
yi1 10| | 2

implying
@ (1) = 65(1) ® span{s, Joa}
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where additional dual basis functionaliz and dos— d»1 in Qg(l) are solved
in the equation (1.35). O

Preliminary experiments show that the closedness subsgieategy tremen-
dously improves the computational efficiency over its poedsor implemented
in ApaTools as the moduldultiplicityStructure in both memory and
computing time. For instancéMultiplicityStructure can handle only
n<6 forthe KSS system (1.33) with multiplicity 42 before rungiout of memory.
The new code increase the capacityrie= 9 with multiplicity 256. Moreover, the
new code is as much as 76 times faster on the KSS systam=a6. The speed up
reaches thousands on some large systems with low multipfi¢i.00].

1.4.2 The fewnomial subspace strategy for multivariate
polynomials

A vector space of multivariate polynomials within a degreeifid may have huge
dimensions. For example, we can construct a simple GCD tebtgm with

{p: (X + X — 1) (X (G + - - +X7) + 2), (1.39)

= X+ +X— L)X+ +x0,)—2)

in expanded form. Fom = 10, the dimension of the vector space of polynomial
pairs within total degreen+ 2 is 1,293,292, while bothp and q are “fewnomi-
als” of only 110 terms. To compute the approximate GCD(pfq), the standard
Sylvester matrix has a size as large as 581 040x 705,432 requiring nearly 500
terabytes of memory. Itis not practical to construct sucrgd matrix on a desktop
computer.

To compute the approximate GCD of such polynomial pairs, mpley a sim-
ple fewnomial subspace stratefpyr reducing the sizes of matrices required for the
computation by identifying the monomial support of the GOl dhe cofactors.
The strategy is similar to the sparse interpolation apgraad¢l5, 33, 105] that is
applied to other polynomial problems [30, 48, 51].

We shall use the polynomial pair in (1.39) as an examplerfer 3 to illustrate
the fewnomial subspace strategy.

Example 1.4.3. Consider the polynomial pair

P(X1, X2, X3) = (X1 + X2+ X3 — 1) (X033 + X1G + 2)
(X, X2,%3) = (X1 +X2 +X3— 1) 04Xz 5%z — 2)
with u= ged(p,q) and cofactorsv and w. Assign fixed random unit complex

values x5 = .8126623341.5827348718 and X3 = .8826218380-.4700837065 in
(p,q) and compute its univariate approximate GCD»q, obtaining
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p(X1,%2,%3) = (X1 +.6953—.1127)(—(0.1887— .0381)x; + 2)
(X1, %2,%3) = (X1 +.6953—.1127)((.8826+ .4701)x; — 1.807— .9813)

(showing 4 digits for each numbeimplying

U(X17223X\3) € Span{lv Xl}v (140)
V(X1,%0,X3) € span{l, X1}, W(X1,%,X3) € span{l, X%} (1.41)

Similarly, we can apply univariate GCD i, and

U(X1,%2,%X3) € span{l, X2}, (1.42)
V(X1,X0,X3) € span{1l, XS}, W(X1,X2,%X3) € span{l, X3} (1.43)
U(X1,%2,X3) € span{l,Xs}, (1.44)

V(R1,%0,%3) € span{1,5X3}, W(Ry,%0,%3) € span{l, x3} (1.45)

Consequently, combining the monomial bases in (1.40)3)ly#lds three fewno-
mial subspaces

U(Xl,Xz,)?3) S 5pan{l, X1, X2, X1X2},
V(X1,%2,%3) € span{l, X1, X3, X1X3},
W(X1,%,%3) € span{1, X3, X3, X3}

In these subspaces we compute bivariate GCOmfg) in x; and Xo:

P(X1, %2, %) = (X1 4 X2 — 1174+ 4700 (x)8 + (.1025+ .9947)x1 + 2)
(X1, %, %3) = (X1 + X2 — 1174+ .4707)((.8826+ .4701)x; + (.8826+.4701 )5 — 2).

Combining monomial bases in (1.44) and (1.45) yields thenfawial subspaces

u € span{l, X1, Xz, X3, X1X3, X2X3},

V€ span{l, X1, X103, %5, XS, XX},
13, %3 X3 3

we span{ ) Xla 29 X3, 1X37 X2X3}-

where u, v and w are computed as approximations to
U=Xi+X4+X3—1, V = XD8+XE+2, W = Xxz+X3x3— 2
O
The process in Example 1.4.3 can be extended to generalafas@sputing the

approximate GCD of multivariate polynomials ifi[xs,--- ,Xs]: For k=1,2,...,s,
compute the approximate GCD of

p(X17 s 7Xk7)?k+17 e 725)
q(Xla N 7Xk72k+1a N 725)
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in Xg,...,X Wwith remaining variables fixed using random unit complexstants
R«.1,---,Xs. Then we can identify the monomial subspaces for v and w in

the first k+1 variables, and on those subspaces we can compute the apatex
GCD of (p,q) inthefirst k41 variables. Continuing this process we complete
the GCD computation ak =s. This simple technique is tremendously effective in
practical computations for sparse polynomials. For the csayn =10 in (1.39),
the largest Sylvester matrix on the fewnomial subspacestigglO columns, which

is quite a reduction from 705,432.

1.5 Software development

Numerical polynomial algebra is a growing field of study wittany algorithms
that are still in early stages of development. Nonethelessyy software packages
are already available. Most advanced software packaggseanaps the polyno-
mial system solvers based on the homotopy continuationadd8v, 82], including
PHCPACK [35, 89], BERTINI [4, 5] and MXEDVoOL [31]. There are also special-
ized implementations of algorithms such as approximate @@izr QRGCD [14]
that is bundled in recent Maple releases, approximateriaeton [48], multiplic-
ity structure [6, 88], SNAP package [41] bundled in Mapleyanate factorization
and multiple root solver MLTRoOT [97], SYNAPS package [66], and@CoA
[9, 55, 56], etc. Those packages provide a broad range oditilersools for appli-
cations and academic research.

A comprehensive software toolboxPATOOLS is also in development for ap-
proximate polynomial algebra with a preliminary releas@][9APATOOLS is built
on two commonly used platforms: Maple and Matlab. The Matkaision is named
APALAB. There are two objectives for designingpATooLs. Assembling robust
computational routines as finished product for applicatias well as providing a
utility library as building blocks for developing more adheed algorithms in nu-
merical polynomial algebra. Currently,PATooLs includes the following compu-
tational routines:

UVGCD: univariate approximate GCD finde¥1(3.1)

MvGCD: multivariate approximate GCD findey1(3.1)

UVFACTOR: univariate approximate factorization with multiplias §1.2.2)
SQUAREFREEFACTOR: multivariate squarefree factorizatiogil(3.4)
MULTIPLICITY STRUCTURE dual basis and multiplicity identificatior§1.3.2)
POLYNOMIAL ELIMINATE : numerical and symbolic elimination routingl(3.3)
APPROXIRANK: numerical rank/kernel routing1.1.2)

NuMJCF: (APALAB only) function for computing the approximate Jordan
Canonical Form of inexact matrice$l(2.2)
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Those routines implement algorithms that solve ill-podgeélaraic problems for
approximate solutions formulated based on the threeestrikinciple elaborated
in §1.2.2 via a two-staged process: Finding the maximum codsinarpejorative
manifold by matrix computation, followed by minimizing thigstance to the mani-
fold via the Gauss-Newton iteration.

As a growing field of study, numerical polynomial algebracaithms are in con-
tinuing development. AATOOLS consists of a comprehensive collection of utility
routines designed to simplify software implementationdlgorithms. Those utili-
ties include matrix computation tools such as orthogormaldformations and other
manipulations, index utilities, monomial utilities, analen. The two most notable
utilities are matrix builder INEARTRANSFORMMATRIX that conveniently gener-
ate matrices from linear transformations between polyabwgctor spaces, and the
nonlinear least squares solver@SNEWTON for minimizing the distance to a pe-
jorative manifold. Both routines are designed with a ptioon simplicity for users
and with options to maximize efficiency, as illustrated ia fbllowing examples.

Example 1.5.1. Construction of Ruppert matrices in ApaToo. The Ruppert
matrix (cf.§1.3.4) is the matrix represents the linear transformati#gh in (1.29)
from a given polynomial f of bidegree [m,n|, say

f = 233 —B5x%y° + X2y + 6x%y° — 15xy* + 3x — 4xy? + 10y* — 2

of bidegree [3,5]. The linear transformation is a combination of the lineans-
formations
Ly N— {9 -g{n ll=eec (1.46)

A Maple user needs to write a straightforward three-line Magocedure for this
linear transformation:

> RupLT := proc( u, X, f, K)
return expand( f * diff(u,x[K]) - diff(f,x[K]) *U )
end proc:

Then the Ruppert matrix is constructed instantly by calling

> R := < LinearTransformMatrix(RupLT,[f,2],[X,y],
[m-1,n],[2 *m-1,2 *n-1]) |
LinearTransformMatrix(RupLT,[f,1],[X,y],
[m,n-1],[2  *m-1,2 *n-1]) >;
60 x 38 Matrix
R= Data Type: anything

Storage: rectangulal
Order: Fortranorder

Here, the input itemf,1]  and[f,2] indicate the linear transformatiort”; .,
and % respectively, [x,y] is the list of indeterminates,[m-1,n] and
[m,n-1]  are the bidegree bounds on the domains of the linear tranatans,

and[2 *m-1,2 *n-1] isthe bidegree bound of the range. Applying the numerical
kernel routine AAPROXIRANK



1 Regularization and Matrix Computation in Numerical Pagmal Algebra 33

> r, s, N = ApproxiRank(R,[1e-8]);

yields the numerical nullity 2 that reveals the number cddiucible factors off .
O

Example 1.5.2. Applying the Gauss-Newton iteration in faairization. After
obtaining an initial approximation

up = —1.99999+ 2.9999% + X%y
Up = .99998+ 2xy’—4.99998/

to the irreducible factors of the polynomidl in Example 1.5.1, we seek the least
squares solution to the overdetermined system of equations

{ ¢'uy—1 = 0
up-u—f] = 0

(cf. Example 1.1.3 an§l1.3.4). A user needs to write a straightforward Maple pro-
cedure for this system of equations

> FacFunc := proc( w, x, f, phi)
return [PolynomialDotProduct( phi,w[1],x)-1,
expand(w[1] *w[2])-f]
end proc;

prepare input data and make a call on the ApaTools routingSSNEWTON

> factors, residual := GaussNewton(FacFunc,[ul,u2],
[[x,y].f,phi], [le-12,9,true]);

1.71e-04
4.82e-10
3.46e-14

Gauss-Newton step 0, residual
Gauss-Newton step 1, residual
Gauss-Newton step 2, residual

factorsresidual := [—2.00000714288266 3.0000107143239%%
1.00000357144138y, .999996428571430 1.99999285714286/ —
4.9999821428571] , .346410161513776 183

The result shows computed irreducible factors with a bactwearor 35 x 1074,
and the factors with a scaling

—2.00000000000008 2.99999999999998+ 1.0000000000000(3y
and
1.00000000000009 2.0000000000000(}3/2 - 5.000000000000Qé

are accurate near hardware precision. O
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APATOOLS is an on-going project with its functionality and librarylistxpand-
ing. We wish to build a comprehensive software toolbox fqulegations and algo-
rithm development. The near term plan is to incorporate @gprate irreducible
factorization, fully implement the closedness/fewnonsiabspace strategy for en-
hancing the efficiency, and collect a library of benchmask pgoblems for numer-
ical polynomial algebra.
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