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Chapter 1
Regularization and Matrix Computation in
Numerical Polynomial Algebra

Zhonggang Zeng

Abstract Numerical polynomial algebra emerges as a growing field of study in
recent years with a broad spectrum of applications and many robust algorithms.
Among the challenges in solving polynomial algebra problems with floating-point
arithmetic, difficulties frequently arise in regularizingill-posedness and handling
large matrices. We elaborate regularization principles for reformulating the ill-
posed algebraic problems, derive matrix computation arising in numerical polyno-
mial algebra, as well as subspace strategies that substantially improve computing
efficiency by reducing matrix sizes. Those strategies have been successfully applied
to numerical polynomial algebra problems such as GCD, factorization, multiplicity
structure and elimination.

Introduction

Accelerated by the advancement of computer algebra systems(CAS), symbolic
algebraic computation has enjoyed tremendous success since the advent of the
Gröbner basis and continues to be a driving force in computational commutative
algebra. The abundance of algorithms along with the depth and breadth of the
theories developed over the years for algebraic computation sets a solid founda-
tion for numerical polynomial algebra, which emerges as a rapidly growing field of
study in recently years. Pioneered by Li [57], Sommese [82] and others, numerical
polynomial system solving based on the homotopy continuation method has set the
standard in efficiency as well as robustness, and enters the stage of expansion into
numerical algebraic geometry as a new field [81]. Meanwhile,numerical polyno-
mial algebra emanating from fundamental numerical analysis and numerical linear
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algebra has also thrived in theory and problem solving, as presented in Stetter’s re-
cently published textbook [84] and evidenced by healthy development of software
(cf. [86]).

In comparison to symbolic computation, numerical computation and approxi-
mate solutions offer substantial advantages in many areas and come with drawbacks
in other aspects. Computing numerical solutions in many cases may be inevitable
due to lack of alternatives, such as locating roots of a polynomial with a degree five
or higher. Even in those cases where exact solutions are available, approximate so-
lutions may make better sense and go deeper in revealing the physical nature. For a
simple example, the exact GCD (greatest common divisor) of the polynomial pair

{
f (x) = 3x3−9.2426x2+13.071x−10
g(x) = 1.7321x4+2.4642x2−2.4495x3+1.4142x−2

(1.1)

is a trivial polynomial u = 1 in symbolic computation. However, its approximate
GCD ũ= 2.000006−1.4142x+x2 along with the verifiable residual provides more
penetrating information: The given polynomial pair is a tiny distance 0.0000056
away from a polynomial pair having ˜u as its exact GCD. The difference here
may mean a more desirable deblurred image restored by an approximate GCD [69]
or a meaningless blank image represented by the trivial exact GCD. Furthermore,
numerical computation tends to be more efficient in both storage and computing
time, and more suitable for large engineering problems, as evidenced by the homo-
topy continuation method for solving polynomial systems applied to kinematics (cf.
[82]).

Numerical polynomial algebra differs from symbolic computation in many as-
pects. The problem data are expected to be inexact and the computation is car-
ried out with floating-point arithmetic. Accuracy and stability, which may not be
a concern in symbolic computation, become of paramount importance in develop-
ing numerical algorithms for solving polynomial problems.A classical algorithm
that is flawless in exact arithmetic, such as the Euclidean algorithm for computing
polynomial GCD, may be prohibitively impractical for numerical computation and
vice versa.As a result, it is often necessary to develop numerical algorithms from
scratch and to employ totally different strategies from their symbolic cousins.

Even the meaning of “solution” may be in question and may depend on the ob-
jective in problem solving. The exact GCDu = 1 in (1.1) is indisputable in
symbolic computation, while the meaning of the approximateGCD has evolved in
several formulations over the years (see the remark in§1.2.2). The comparison be-
tween exact and approximate GCD is typical and common in algebraic problems
where ill-posedness is often encountered and the solution is infinitely sensitive to
data perturbations. Numerical computation which, by nature, seeks the exact solu-
tion of a nearby problem becomes unsuitable unless the problem is regularized as
a well-posed one. As it turns out, the collections of ill-posed problems form pejo-
rative manifolds of positive codimensions that entangled together with stratification
structures, as elaborated in§1.2, where a manifold is embeded in the closure of man-
ifolds of lower codimensions. Thus a tiny arbitrary perturbation pushes the problem
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away from its residing manifold, losing the very structure of the solution. Dubbed as
the “three-strikes” principle for formulating an approximate solution and removing
ill-posedness, we summarize that the approximate solutionshould be the exact solu-
tion of anearby problemresiding in the manifold of themaximum codimensionand
having theminimum distanceto the given problem. Approximate solutions with
such a formulation become viable, attainable, and continuous with respect to data.

Numerical polynomial algebra can also be regarded as havingnumerical linear
algebra as one of its cornerstones. Pioneered by Wilkinson [93], Golub [34], Kahan
[43] and many others around the same time of Buchberger’s work on Gröbner basis ,
numerical linear algebra flourished since 1960s with well established theories, algo-
rithms and software libraries for numerical matrix computations. One of the early
catalysts that contributed to the recent advances of numerical polynomial algebra is
the introduction of the singular value decomposition to polynomial computation by
Corless, Gianni, Trager and Watt [11] in 1995. As elaboratedin §1.3, polynomial
algebra problems in numerical computation lead to matrix computation problems
such as least squares, eigenproblem and particularly, numerical rank/kernel identifi-
cation. Theories, techniques and ideas accumulated in numerical linear algebra are
rich resources for numerical polynomial algebra.

This paper surveys basic approaches and techniques in developing algorithms
for numerical polynomial algebra, emphasizing on regularizing ill-posed algebraic
problems and employing matrix computation. The approachesand techniques elab-
orated in this survey have been used in many algorithms with successful results and
implementations. As a growing field of study, theoretical advance and algorithm de-
velopment are on-going and gradually evolving. Further advancement will continue
to emerge in the future.

1.1 Notation and preliminaries

1.1.1 Notation

The n dimensional complex vector space is denoted byCn , in which vectors
are column arrays denoted by boldface lower case letters such as a, u , v2 , etc,
with 0 being a zero vector whose dimension can be understood from the context.
Matrices are represented by upper case letters likeA and J , with Cm×n denoting
the vector space consists of allm×n complex matrices. Notations(·)> and (·)H

stand for the transpose and the Hermitian transpose, respectively, of the matrix or
vector (·) .

The ring of polynomials with complex coefficients in indeterminates x1, . . . ,xs

is denoted by C[x1, . . . ,xs] , or C[x] for x = (x1, . . . ,xs) . A polynomial as a
function is denoted by a lower case letter, sayf , v, or p1 , etc. The collec-
tion of all the polynomials with a certain degree bound formsa vector space over
C . Throughout this paper, if a letter (sayf ) represents a polynomial, then either
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[[ f ]] or the same letter in boldface (i.e. f ) denotes its coefficient vector, where the
underlying vector space and its basis are clear from the context.

1.1.2 Numerical rank and kernel

The fundamental difference between exact and numerical computation can be
demonstrated in the meaning of the matrix rank. With exact arithmetic used in sym-
bolic computation, a matrix is non-singular if and only if its determinant is nonzero.
Such a characterization of being full rank, however, is practically meaningless in
numerical computation as shown in a simple example below.

Example 1.1.1. The polynomial division is equivalent to linear system solving:
Finding the quotientq and the remainderr of a polynomial f divided by g

satisfying f = g ·q+ r is, in fact, solving a linear systemG
[

q
r

]

= f, where

f , q and r are vector representations off , q and r respectively, along with
a corresponding matrixG. For instance, letg(x) = x+ 10 and use the standard
monomial basis for the vector representations off , q and r . The matrix G is

G =











1
10 1

10
...
... 1

10 1











(n+1)×(n+1)

(1.2)

where n is the degree of f . The matrix G may appear benign with a full rank
and det(G) = 1. However, its 2-norm distance to a singular matrix is less than
10-n . Such a matrix with even a modest size, sayn = 15, behaves the same way
as a singular matrix in numerical computation. Consequently, round-off errors in
the order of hardware precision during synthetic division can result in substantial
errors of magnitudeO(1) in the coefficients ofq and r (c.f. [98, §4.2.3]). The
numerical rank ofG should be n, not n+1 unless n is small. ut

Remark: Example 1.1.1 indicates that the Euclidean algorithm can behighly
unreliable in numerical computation of the polynomial GCD since it consists of
recursive polynomial division in the form off = g·q+ r . Interestingly, polynomial
division in the form of f = g·q, or equivalently the polynomial division in the form
of f = g · q+ r combined with an additional constraintr = 0, is a stable least
squares problem. This can be seen from Example 1.1.1 by deleting the last column
from matrix G. The resulting matrix possesses a near perfect condition number
(≈ 1) with its smallest singular value larger than 9. ut

The condition of a matrix in numerical computation depends on its distance to
the nearest rank-deficient matrices. Likewise, thenumerical rank(or approximate
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rank) of a matrix depends on the (exact) ranks of its nearby matrices. If a matrix A
can have an error of magnitudeθ , then the “worst” (i.e. lowest rank) matrix within
a distanceθ dictates its numerical behavior. The numerical rank ofA within θ ,
denoted by rank θ (A) , is thus defined as the smallest rank of all matrices within a
distance θ of A:

rank θ (A) = min
‖B−A‖2≤θ

rank (B) (1.3)

where rank ( ·) denotes the rank of matrix(·) in exact sense. Naturally, the exact
kernel K (B) of B in (1.3) is taken as thenumerical kernelKθ (A) of A within
θ :

Kθ (A) = K (B) (1.4)

where
∥
∥B−A

∥
∥

2 = min
rank (C)=rank θ (A)

∥
∥C−A

∥
∥

2.

The numerical rank and numerical kernel of a matrixA∈Cm×n can equivalently
be defined using the singular value decomposition (SVD) [34]:

A = σ1u1vH

1 + · · ·+ σnunvH

n = U












σ1

σ2
. . .

σn












V H (1.5)

where σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0 are the singular values ofA, the matrices

U = [u1, · · · ,um] ∈ C
m×m and V = [v1, · · · ,vn] ∈ C

n×n

are unitary matrices whose columns are left and right singular vectors of A re-
spectively. The numerical rankrank θ (A) = k if and only if there are exactlyk
singular values ofA lie above the thresholdθ : σk > θ ≥σk+1 , and the numerical
kernel Kθ (A) = span{vk+1, . . . ,vn} .

Computing the exact rankrank (A) is an ill-posed problem in the sense that a
tiny perturbation can alter the rank completely ifA is of rank-deficient. As a result,
the exact rank and kernel in general can not be computed in numerical computation
since round-off errors are inevitable. By formulating numerical rank and kernel
in (1.3) and (1.4) respectively, matrix rank-revealing isregularizedas a well-posed
problem and becomes suitable for numerical computation. Infact, the singular value
decomposition is remarkably stable and well established innumerical linear algebra.
The sensitivity of the numerical kernel can be measured by the condition number
σ1/σk by Wedin’s Theorem [92].

On the other hand, the standard singular value decomposition can be unnecessar-
ily costly to compute. The numerical rank/kernel computation in numerical polyno-
mial algebra often involves matrices of low numerical nullities. For those matrices,
numerical ranks and kernels can be computed efficiently using a specialized rank-
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revealing method [59], which has become an indispensable component of numerical
polynomial algebra algorithms that will be discussed laterin this survey. The rank-
revealing method assumes the input matrixR is in upper-triangular form without
loss of generality. Every matrixA has a QR decomposition [34]A= QR and the
numerical kernel ofA is identical to that of the upper-triangular matrixR. The
following null vector finder is at the core of the numerical rank-revealing method in
[59]:







set z0 as a random vector
for j = 1,2, · · · do





solve RHx = z j-1 with a forward substitution
solve Ry = x with a backward substitution

set z j = y
‖y‖2

and ς j = ‖x‖2
‖y‖2

(1.6)

The iteration in (1.6) produces sequences
{

ς j
}

and
{

z j
}

satisfying

lim
j→∞

ς j = σn and lim
j→∞

z j = vn

where σn and vn are the smallest singular value ofA and the associated right
singular vector respectively. Each iterative step of the algorithm (1.6) requires a
forward substitution and a backward substitution on triangular matrices RH and
R respectively. After finding a numerical null vectorz of matrix R within θ ,
insert a multiple of z on top of R to form

R̂ =

[
‖R‖zH

R

]

.

We can continue to calculate a numerical null vectorẑ of R̂ within θ . If such a
ẑ exists, it is also a numerical null vector ofR orthogonal toz [59]. By updating
the QR decomposition ofR̂, we can apply the algorithm (1.6) again to findẑ. An
orthonormal basis for the numerical kernelKθ (A) can be obtained by continuing
this process.

Numerical rank can also be considered a generalization of the conventional rank
since rank (A) = rank θ (A) = k whenever 0< θ < σk . A matrix A in practical
computation is usually known in a perturbed form̂A = A+ E where E is the
noise that can be expected to be small. Letσ j(·) denote the j -th singular value
of the matrix (·) . It is known that [85, Chapter 1, Corollary 4.31]

|σ j(A+E)−σ j(A)| ≤ ‖E‖2, j = 1, · · · ,n.

Consequently, the underlying (exact) rankrank (A) can be recovered asrank θ (A)
as long as

‖E‖2 < θ < σk(A)−‖E‖2.

In practical computation, the choice of the thresholdθ is problem dependent,
and may be difficult to decide in some cases. The general rule is that θ should
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be above the expected noise magnitude‖E‖2 and below the smallest positive
(unknown) singular valueσk(A) .

The formulation of the numerical rank is intended to answer the following ques-
tion: How to find the rank of a matrix A that is under a small perturbation?
The answer is conditional:If the perturbation is sufficiently small, then the rank
of A can be recovered asrank θ (A) for a threshold slightly larger than the per-
turbation. Numerical rank-revealing would become intractable when the window
σk(A)−‖E‖2 > θ > ‖E‖2 of choosing the thresholdθ disappears.

Consider Example 1.1.1 again. For any thresholdθ chosen within the interval
10-n < θ < 9, the matrix G in (1.2) is of numerical rankn, or numerical nullity
1 within θ .

1.1.3 The linear and nonlinear least squares problems

Conventional solutions do not exist for an overdetermined linear system

Ax = b

when the matrixA∈ C
m×n for m> n unless, for a zero probability, the vectorb

happens to be in the range ofA. Instead, theleast squares solutionx∗ becomes
the alternative that satisfies

∥
∥Ax∗−b

∥
∥2

2 = min
y∈Cn

∥
∥Ay−b

∥
∥2

2, (1.7)

The least squares solution is unique:x∗ = A+ b when A is of full rank, where
A+ = (AH A)-1AH is thepseudo-inverseof A.

Although solving Ax = b for its least squares solution is equivalent to solv-
ing the normal equation(AH A)x = AH b , there is a fundamental difference be-
tween symbolic computation and numerical approach from here. Solving the nor-
mal equation directly may be a natural approach using exact arithmetic. Numerical
computation, where accuracy is a concern, goes a step further by solving the first
n equations of Rx = QH b after obtaining the QR decompositionA = QR (c.f.
[34, §5.3]). Both approaches are equivalent in theory but not muchso in practical
computations. It is neither wise nor necessary to constructor to solve the normal
equation as it is in numerical computation. On the other hand, the standard numeri-
cal approach of solvingRx = QH b is not attractive for symbolic computation due
to the square roots required in the QR decomposition.

Solving linear least squares solutions is essential in one of the most basic opera-
tions in numerical polynomial algebra: Polynomial division in floating-point arith-
metic. As discussed in Example 1.1.1, dividing a polynomialf by g for the
quotient q and the remainderr in the form of f = g ·q+ r can easily be ill-
conditioned. Consequently, the synthetic division is prohibitively unstable in nu-
merical computation. However, if the remainder is known, say r = 0, then finding
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q in the equationg ·q= f is a stable linear least squares problem

C(g)q = f (1.8)

where C(g) is the convolution matrix [17] representing the linear transformation
L : u −→ g · u between relevant polynomial vector spaces in which vectorsq
and f representq and f respectively. Equation (1.8) can be accurately solved
in numerical computation for its least squares solution, avoiding the difficulty of
synthetic division. Thisleast squares divisionplays an indispensable role in many
works such as [30, 98, 102].

The least squares problem also arises in polynomial algebra(c.f. [48, 98, 102]
and Example 1.1.3 below) in a nonlinear form of solving an overdetermined system
of (nonlinear) equations

F(z) = b, z∈ C
n (1.9)

for an analytic mappingF : Cn → Cm with m> n. Similar to the linear case,
solving (1.9) requires seeking the least squares solutionz∗ defined by

∥
∥F(z∗)−b

∥
∥2

2 = min
y∈Cn

∥
∥F(y)−b

∥
∥2

2.

The necessary condition forz∗ to be a (local or global) least squares solution is

J(z)H F(z) = 0 (1.10)

where J(z) is the Jacobian ofF(z) (cf. [20, 98]). Although the global minimum
would be attractive theoretically, a local minimum is usually sufficient in practical
computations, and the local minimum is global if the residual ‖F(z∗)−b‖2 is tiny.
In principle, the least squares solution of (1.9) can be solved by many nonlinear
optimization methods. There is a distinct feature of the overdetermined systems
arising from numerical polynomial algebra: The residual‖F(z∗)−b‖2 is expected
to be small (e.g.an approximate factorizationpm1

1 · · · pmk
k of f is expected to

satisfy
∥
∥pm1

1 · · · pmk
k − f

∥
∥ � 1). As a result, a simple optimization method, the

Gauss-Newton iteration, is particularly effective.
The Gauss-Newton iteration is given as follows: From an initial iterate z0 ,

zk = zk-1−J(zk-1)
+
[
F(zk-1)−b

]
, k = 1,2, · · · . (1.11)

The Gauss-Newton iteration is a natural generalization of the standard Newton iter-
ation. Detailed studies of the Gauss-Newton iteration can be found in some special
topic textbooks and articles, such as [18, 20, 63, 98].

The Gauss-Newton iteration is well defined in a neighborhoodof the desired
(local or global) minimum pointz∗ if the JacobianJ(z∗) is injective (or, equiva-
lently, of nullity zero). The condition of being injective on J(z∗) is also essential
to ensure the local convergence of the Gauss-Newton iteration, as asserted in the fol-
lowing lemma. Different from Newton’s iteration for normally determined systems,
however, the locality of the convergence consiststwo requirements: The initial iter-
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ate z0 must be sufficiently near the least squares solutionz∗ , while the residual
‖F(z∗)−b‖2 must be sufficiently small.

Lemma 1.1.2.[98, Lemma 2.8] Let Ω ⊂C
m be a bounded open convex set and

F : D ⊂Cm −→ Cn be analytic in an open set D⊃ Ω . Let J(z) be the Jacobian
of F(z) . Assumez∗ ∈ Ω is a local least squares solution to system(1.9). Let σ
be the smallest singular value of J(z∗) . Let δ ≥ 0 be a constant such that

∥
∥
[
J(z)−J(z∗)

]
H
[
F(z∗)−b

]∥
∥

2 ≤ δ
∥
∥z−z∗

∥
∥

2 for all z∈ Ω .

If δ < σ2 , then for any c∈
(

1
σ , σ

δ
)
, there existsε > 0 such that for all z0 ∈ Ω

with ‖z0−z∗‖2 < ε , the sequence
{

z1,z2, · · ·
}

generated by the Gauss-Newton
iteration (1.11)is well defined insideΩ , converges toz∗ , and satisfies

∥
∥
∥zk+1−z∗

∥
∥
∥

2
≤

cδ
σ

∥
∥
∥zk−z∗

∥
∥
∥

2
+

cαγ
2σ

∥
∥
∥zk−z∗

∥
∥
∥

2

2
, (1.12)

where α > 0 is the upper bound of‖J(z)‖2 on Ω , and γ > 0 is the Lipschitz
constant of J(z) in Ω , namely,‖J(z+h)−J(z)‖2 ≤ γ ‖h‖ for all z, z+h ∈ Ω .

Notice that the constantδ in (1.12) is proportional to the residual‖F(z∗)−b‖2 .
Therefore, the smaller is this residual, the faster is the convergence. When the least
squares solutionz∗ is a conventional solution, the residual will be zero and the
convergence is quadratic.

The condition thatJ(z∗) is injective also implies that the smallest singular value
σmin(J(z∗)) is strictly positive and provides an asymptotic sensitivity measurement
[98]

τ(F,z∗) =
1

σmin(J(z∗))
≡

∥
∥J(z∗)+

∥
∥

2 (1.13)

for the least squares solutionz∗ .
The Gauss-Newton iteration is extensively applied in the algorithms for numeri-

cal polynomial algebra in this survey. A generic Gauss-Newton iteration module is
available in the software packagesApaTools/Apalab [99]. When formulating
the overdetermined systemF(z) = b , it is important to have enough equations to
ensureJ(z∗) is injective. Auxiliary equations are often needed for thispurpose as
shown in the following example.

Example 1.1.3. Consider the polynomial factorization problem. For simplicity of
the exposition, assumef can be factorized in three factorsf = uα vβ wγ where
u, v and w are pairwise co-prime polynomials, and the objective is to compute
the coefficient vectorsu , v and w of u, v and w respectively. Naturally, the
overdetermined systemG(u,v,w) = 0 with

G(u,v,w) ≡ [[uαvβ wγ − f ]] (1.14)

needs to be solved, as pointed out in [48], where[[·]] denotes the vector represen-
tation of the polynomial (·) in a given vector space. However, the Jacobian of
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G(u,v,w) in (1.14) is not injective sinceG(u,v,w) = G(c1u,c2v,c3w) as long as

cα
1 cβ

2 cγ
3 = 1. More constraints are therefore needed. A simple remedy wetypically

employ is to include extra equationsaH u−1 = bH v−1 = 0 with certain vectors
a and b of proper dimensions. The only restriction for choosinga and b is to
avoid aH u = bH v = 0 near the solutionu and v. They can be random vectors,
or more preferably the scalar multiples of the initial approximations to u and v
respectively. Then the JacobianJ(u,v,w) of the analytic mapping

F(u,v,w) =

[
aHu−1
bHv−1

[[uαvβ wγ − f ]]

]

can be easily proved as injective at the desired solution(u,v,w) : Assume

J(u,v,w)

[
p
q
r

]

= 0 (1.15)

where p , q and r are vector representations of polynomialsp, q and r
respectively. From straightforward differentiations, wehave

αuα-1vβ wγ p+ βuαvβ -1wγ q+ γuαvβ wγ-1r = 0

aHp = bHq = 0.

Consequentlyα pvw+ βuqw+ γuvr = 0, which leads top = g1u, q = g2v and
r = g3w since u, v, and w are pairwise co-prime. We further know thatg1 , g2

and g3 must be constants from (1.15). ThenaH p = bH q = 0 and aH u = bH v = 1
implies g1 = g2 = 0 and thusp = q = 0. Furthermoreγuvr = 0 implies r = 0.
Therefore J(u,v,w) is injective. ut

Appending extra equations as shown in Example 1.1.3 is a typical strategy for
making the Jacobian injective before applying the Gauss-Newton iteration. The
approaches of proving the injectiveness are also similar among different problems.

1.2 Formulation of the approximate solution

1.2.1 The ill-posed problem and the pejorative manifold

Hadamard characterized a problem aswell-posedif its solution satisfies existence,
uniqueness, and continuity with respect to data [36]. A problem whose solution
lacks one of the three properties is termed anill-posed problem. In the current liter-
ature, the term ill-posed problem mainly refers to those having solutions infinitely
sensitive to data perturbations [19]. Contrary to Hadamard’s misbelief that ill-posed
problems are artificial and unsuitable for modeling physical systems, this type of
problems arise quite often in science and engineering applications (cf.e.g. [37,
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§1.2]). As one of the main challenges for numerical computation, algebraic prob-
lems are commonly ill-posed. Such examples are abundant:

• Univariate polynomial factorization: Under an arbitrary tiny perturbation, a
polynomial p(x) = (x− x1)

m1 · · ·(x− xk)
mk in expanded form loses those re-

peated factors corresponding to multiplicitiesmj ’s higher than one, and multiple
roots turn into clusters of simple roots.

• Polynomial GCD: For a given pair of polynomials(p,q) under arbitrary per-
turbations, its GCD generically degrades to a trivial constant polynomial even if
(p,q) originally possesses a GCD of positive degree.

• Irreducible factorization of multivariate polynomials:For a multivariate polyno-
mial p= f α1

1 f α2
2 · · · f αk

k with nontrivial factors f1, . . . , fk , the factorizability is
lost and the polynomial becomes irreducible under an infinitesimal but arbitrary
perturbation. The irreducible factorization of polynomial p is thus discontin-
uous, preventing a meaningful solution using conventionalmethods at presence
of data perturbation.

• The matrix rank and kernel:As perhaps the most basic ill-posed problem (c.f.
§1.1.2), the rank and kernel of a matrix are discontinuous when the matrix is rank-
deficient. A tiny perturbation will generically destroy thekernel entirely and
turns the matrix into a full-ranked one. The ill-posedness of matrix rank/kernel
may be under-noticed because the singular value decomposition is available and
effective. The capability of identifying thenumericalrank and kernel is one of
the very cornerstones of methods for solving ill-posed problems. This ill-posed
problem extends to solving a linear systemAx = b where the matrix A is
rank-deficient. A perturbation generically renders the system unsolvable in exact
sense even if the original system has infinitely many solutions.

• The matrix Jordan Canonical Form:For an n×n matrix A, there is a Jordan
canonical decompositionA = XJX−1 where J is the block diagonal Jordan
matrix. When any of the Jordan block inJ is larger than 1×1, however, the
perturbed matrixA+E generically loses all the non-trivial Jordan structure of
A, making it extremely difficult to compute the Jordan decomposition and the
underlying multiple eigenvalues.

In a seminal technical report [43] that has never been formally published, Ka-
han studied three ill-posed problems (rank-deficient linear system, multiple roots
of polynomials and multiple eigenvalues of matrices) and pointed out that it may
be a misconception to consider ill-posed problems as hypersensitive to data pertur-
bations. The collection of those problems having solutionsof a common structure
forms what Kahan calls apejorative manifold. An artificial perturbation pushes the
problem away from the manifold in which it originally resides and destroys its so-
lution structure. Kahan proves, however, the solution may not be sensitive at all if
the problem is perturbed with a restriction that it surfs in the pejorative manifold it
belongs.
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Kahan’s observation of pejorative manifolds extends to other ill-posed problems
such as those in the following examples. Furthermore, it hasbecome known that
these manifolds may have a certainstratificationstructure.

Example 1.2.1. In the vector spaceCm×n for m≥ n, the collection of rank-k
matrices forms a pejorative manifold

M
m×n
k =

{
A∈ C

m×n
∣
∣ rank (A) = k

}
.

Counting the dimension from the basis for the column space(m·k) and the remain-
ing columns as linear combinations of the basis((n− k) · k), it is easy to see[58]
that the codimensioncodim(M

m×n
k ) = (m− k)(n− k) . Those manifolds form a

stratification structure

M
m×n
0 ⊂ M

m×n
1 ⊂ ·· · ⊂ M

m×n
n ≡ C

m×n,

where (·) denotes the closure of the set(·) . ut

Example 1.2.2. Associating a monic polynomial

p(x) = x4 + p1x3 + p2x2 + p3x+ p4

of degree 4 with the coefficient vectorp = [p1, p2, p3, p4]
> ∈C4 , the set of all poly-

nomials possessing a common factorization structure formsa factorization mani-
fold. For instance

Π(1,3) =
{
(x−z1)

1(x−z2)
3

∣
∣ z1,z2 ∈ C, z1 6= z2

}

with codimensioncodim(Π(1,3)) = 2. On the other hand, manifoldΠ(1,3) is in
the closure of manifold

Π(1,1,2) =
{
(x−z1)

1(x−z2)
1(x−z3)

2
∣
∣ z1,z2,z3 ∈ C, zi 6= zj for i 6= j

}

with codim
(
Π(1,1,2)

)
= 1 since

lim
ε→0

(x−z1)
1(x−z2)

1(x−z2+ ε)2 = (x−z1)
1(x−z2)

3

Likewise Π(1,1,2) ⊂ Π(1,1,1,1) ≡ C4 , and the five manifolds form astratifi-
cationas shown in Figure 1.1. Moreover, each manifold can be parametrized in the
form of p = F(z) . For instance,Π(1,3) is parametrized as

p = [[(x−z1)(x−z2)
3]],

namely,






p1

p2

p3

p4







=







−3z2−z1

3z2
2 +3z1z2

−z3
2−3z1z2

2
z1z3

2






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The Jacobian of suchF(z) is injective in the corresponding manifold, ensuring
the local Lipschitz continuity of the root vectorz = [z1,z2]

> with respect to the
coefficients p as well as the capability of applying the Gauss-Newton iteration for
refining the multiple roots [98]. ut

Π(4)

Π(2,2)

Π(1,3)

Π(1,1,1,1)Π(1,1,2)

codimension

3 2 1 0

Fig. 1.1 Stratification of manifolds of degree 4 polynomials, with “−→ ” denoting “in the closure
of”

Example 1.2.3. Consider univariate polynomial pairs(p,q) of degreesm and n
respectively withm≥ n. Let P

m,n
k be the collection of those pairs having GCDs

of a common degreek:

P
m,n
k =

{
(p,q) ∈ C[x]×C[x]

∣
∣

deg(p) = m, deg(q) = n, deg
(

gcd (p,q)
)

= k
}

(1.16)

where gcd (p,q) is the GCD of the polynomial pair(p,q) . Every polynomial
pair (p,q) ∈ P

m,n
k can be written asp = uv and q = uw where u is a monic

polynomial of degreek. Thus it is easy to see thatPm,n
k is a manifold of the

dimension k+(m− k+ 1)+ (n− k+ 1) , or codimensionk exactly, and those
GCD manifolds form a stratification structure

P
m,n
n ⊂ P

m,n
n-1 ⊂ ·· · ⊂ P

m,n
0 ≡ C

m+n+2 . (1.17)

Furthermore, each manifold can again be parametrized in theform of u = F(z) . In
fact,

u =
[

p
q

]

=

[
[[uv]]
[[uw]]

]

= F(z)

with deg(u) = k, where z is a vector consists of the coefficients ofu, v and w
except the leading coefficient 1 ofu. Also similar to Example 1.2.2, the Jacobian of
F(z) is injective, ensuring the local Lipschitz continuity of(u,v,w) with respect
to (p,q) on the manifoldP

m,n
k as well as the applicability of the Gauss-Newton

iteration for refinement. ut

In summary, there exist similar geometric structures for many ill-posed problems
in polynomial algebra such as multivariate GCD, multivariate square-free factor-
ization, and multivariate irreducible factorization: Thecollection of the problems
sharing a common solution structure forms a pejorative manifold P that can be
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parametrized in the form ofu = F(z) where the Jacobian ofF(z) is injective on
the manifoldP . In addition, the pejorative manifolds form a stratification structure
in which a manifold is in the closure of some other manifolds of lower codimension.
As a result, a problem may be near many manifolds of lower codimension if it is
near (or resides in) one particular pejorative manifold.

When an ill-posed problem with inexact data is encountered and it needs to be
solved approximately using floating-point arithmetic, thefirst and foremost ques-
tion is the meaning of “solving the problem”. Computing the exact solution of an
inexact ill-posed problem, such as calculating the trivialconstant GCD, does not
make much sense in practical applications. On the other hand, approximate solu-
tions need to possess continuity. That is, the approximate solution must converge
to the exact solution if the problem noise approaches zero. It appears reasonable to
set the objective of solving an ill-posed problem numerically as follows:

Let P be a given problem that is a small perturbation from an ill-posed prob-
lem P̂ residing in a pejorative manifoldΠ with exact solution Ŝ. Find
an approximate solutionS̃ of P in the sense that̃S is the exact solution
of a certain problem P̃ where P̃ belongs to the same manifoldΠ and
‖S̃− Ŝ‖ = O(‖P− P̂‖) .

1.2.2 The three-strikes principle for removing ill-posedness

We shall use the univariate factorization problem in Example 1.2.2 as a case
study for a rigorous formulation of the approximate solution that removes the ill-
posedness. When the given polynomialp is a small perturbation from ˆp =
(x− z1)(x− z2)

3 that belongs to the factorization manifoldΠ(1,3) of codimen-
sion 2, the stratification structure as shown in Figure 1.1 indicates that p is also
near two other manifoldsΠ(1,1,2) and Π(1,1,1,1) of lower codimensions 1
and 0 respectively. Here the distanceδ (p,Π) of p from a manifold can be
naturally defined as

δ (p,Π) = inf
q∈Π

∥
∥p−q

∥
∥.

Actually, the polynomial p is generically closer to those “other” manifolds than it
is to the correct one:

δ (p,Π(1,3)) ≥ δ (p,Π(1,1,2)) ≥ δ (p,Π(1,1,1,1)).

Let µ be the minimum of the distances betweenp and manifoldsΠ(2,2) and
Π(4) and assume the perturbation is sufficiently small such that

‖p− p̂‖ ≤ δ (p,Π(1,3)) � µ .

Then the desired manifoldΠ(1,3) stands out as thehighest codimensionmanifold
among all the manifolds that intersect theθ -neighborhood ofp for every θ sat-
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isfying δ (p,Π(1,3)) < θ < µ . That is, the key to identifying the correct manifold
is to seek the manifold of thehighest codimensionwithin a proper thresholdθ .

Upon identifying the pejorative manifoldΠ(1,3) , it is natural to look for ˜p =
(x− z̃1)(x− z̃2)

3 ∈ Π(1,3) that minimizes the distance‖p− p̃‖ , and take the exact
factorization (x− z̃1)(x− z̃2)

3 of p̃ as theapproximate factorizationof p.

Definition 1.2.4. Let p be a given polynomial of degreen and let θ > 0.
Assume m1 + · · ·+ mk = n and Π(m1, . . . ,mk) is of the highest codimension
among all the factorization manifolds inCn that intersect theθ -neighborhood of
p. Then the exact factorization of ˜p ∈ Π(m1, . . . ,mk) is called the approximate
factorization of p if

∥
∥p− p̃

∥
∥ = min

q∈Π(m1,··· ,mk)

∥
∥p−q

∥
∥.

A theoretical elaboration of the univariate factorizationand its regularization is
presented in a recent paper [101]. Generally, solving an ill-posed algebraic prob-
lem starts with formulating theapproximate solutionfollowing the “three-strikes”
principle below to remove the discontinuity:

Backward nearness: The approximate solution to the given (inexact) problemP
is the exact solution of a nearby problem̃P within a distanceθ of P.

Maximum codimension: The nearby problemP̃ is in the closure Π of the
pejorative manifold Π of the highest codimension among all the pejorative
manifolds intersecting theθ -neighborhood of the given problemP.

Minimum distance: The nearby problemP̃ is the nearest point in the closureΠ
of Π to the given problemP

Based on these principles, theapproximate GCDof a polynomial pair can be
defined similarly using the notation in Example 1.2.3.

Definition 1.2.5.[96] Let (p,q) be a given polynomial pair of degreem and n
respectively, and letθ > 0 be a given GCD threshold. Assumek is the maximum
codimension among all the GCD manifoldsPm,n

0 , P
m,n
1 , . . . ,Pm,n

n embedded in
Cm+n+2 that intersect theθ -neighborhood of(p,q) :

k = max
δ ((p,q),P

m,n
j )<θ

codim
(
P

m,n
j

)

Then the exact GCD of(p̃, q̃) ∈ P
m,n
k is called the approximate GCD of(p,q)

within θ if
∥
∥(p,q)− (p̃, q̃)

∥
∥ = min

( f ,g)∈P
m,n
k

∥
∥(p,q)− ( f ,g)

∥
∥. (1.18)

Remark: The univariate GCD is the first ill-posed problem in numerical
polynomial algebra that has been going through rigorous formulations. In 1985,
Schönhage [77] proposed thequasi-GCDfor univariate polynomials in a definition
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requiring only the backward nearness. Schönhage also assumes the given polyno-
mial pair is inexact but arbitrarily precise. Similar formulations are later used in
[14, 30, 39, 67, 68, 72] with some variations. In 1995, Corless, Gianni, Trager and
Watt [11] first noticed the importance of the “highest degree” requirement of the ap-
proximate GCD in addition to Schönhage’s notion. This requirement is also adopted
in [24]. In the same paper [11], Corless et al. also suggest seeking the minimum
distance. In 1996/1998 Karmarkar and Lakshman [52, 53] formulated two numer-
ical GCD problems: “The nearest GCD problem” and the “highest degree approx-
imate common divisor problem” in detail, with the latter specifying requirements
of backward nearness, highest degree, and minimum distance. The formulation in
Definition 1.2.5 differs somewhat with Karmarkar-Lakshman’s. The polynomial
pair (p̃, q̃) is on theclosureof the manifold of highest degree polynomial pairs
and not necessarily monic. There is a different type of numerical GCD formula-
tion: The “nearest GCD problem”. Originated by Karmarkar and Lakshman [53, p.
654], this problem seeks the nearest polynomial pairs possessing an exact nontriv-
ial GCD. Kaltofen, Yang and Zhi (cf.e.g.[49, 50]) generalized this formulation:
Given a polynomial pair (p,q) and an integerk > 0, find the polynomial pair
(p̃, q̃) that is nearest from(p,q) such that the (exact) GCD of(p̃, q̃) is of degree
k or higher. This problem is equivalent to the constrained minmization (1.18) as
a stand-alone problem with no need to specify a toleranceθ or to maximize the
manifold codimension. ut

In a straightforward verification, the formulation of the numerical kernel of a
matrix in §1.1.2 conforms with the “three-strikes” principle. We can formulate the
approximate multivariate GCD, the approximate square-free factorization, the ap-
proximate irreducible factorization, the approximate Jordan Canonical Form and
other ill-posed problems the same way as and Definition 1.2.4and Definition 1.2.5
according to the principles of backward nearness, maximum codimension and min-
imum distance.

Computing the approximate solution as formulated above involves identification
of the pejorative manifold of the highest codimension within the given threshold
as well as solving a least squares problem to obtain the minimum distance. Algo-
rithms can be developed using a two-staged approach: Finding the manifold with
matrix computation, followed by applying the Gauss-Newtoniteration to obtain the
approximate solution.

Example 1.2.6. The effectiveness of this formulation and the robustness ofthe cor-
responding two-staged algorithms can be illustrated by thepolynomial factorization
problem for

p(x) = x200− 400x199+ 79500x198+ . . .+ 2.04126914035338·1086x100

−3.55467815448396·1086 x99+ . . .+ 1.261349023419937·1053x2 (1.19)

−1.977831229290266·1051 x+ 1.541167191654753·1049

≈ (x−1)80(x−2)60(x−3)40(x−4)20
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whose coefficients are rounded to hardware precision. A new algorithmUVFACTOR

[99] designed for computing the approximate factorization outputs the precise fac-
torization structure and accurate factors within a threshold θ = 10-10, along with
error estimates and a sensitivity measurement. This resultis a substantial improve-
ment over the previous algorithm MULTROOT [97, 98] which is limited to extracting
factors of multiplicity under 30. In contrast, standard methods like Matlab function
roots output scattered root clusters, as shown in Figure 1.2.2.

>> [F,res,cond] = uvfactor(f,1e-10);

THE CONDITION NUMBER: 2.57705
THE BACKWARD ERROR: 7.62e-016
THE ESTIMATED FORWARD ROOT ERROR: 3.93e-015

FACTORS

( x - 4.000000000000008 )ˆ20
( x - 2.999999999999994 )ˆ40
( x - 2.000000000000002 )ˆ60
( x - 1.000000000000000 )ˆ80
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−15
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Fig. 1.2 Matlab results for the polynomial (1.19)

ut
Pejorative manifolds in numerical polynomial algebra can often be parametrized

in the form of u = F(z) with injective Jacobians, as shown in previous examples.
In such cases, it is our conjecture that the approximate solution formulated based on
backward nearness, maximum codimension and minimum distance is well-posed
in the following sense: If the given problemP is a perturbation from an (exact)
problem P̂ with sufficiently small error ε , then there is an upper boundµ on
the thresholdθ . As long as θ is chosen in the interval(ε, µ) , there is a unique
approximate solutionS of P within all such θ , and the solutionS is continuous
with respect to the problemP. Moreover, the approximate solutionS converges
to the exact solutionŜ of P̂ if P approaches toP̂ with

∥
∥S− Ŝ

∥
∥ = O

(∥
∥P− P̂

∥
∥
)
.



18 Z. Zeng

1.3 Matrix computation arising in polynomial algebra

As Stetter points out in [84] and in the title of [83], matrix eigenproblem is at the
heart of polynomial system solving. Furthermore, matrix computation problems
such as least squares and numerical rank/kernel computation also arise frequently
and naturally in polynomial algebra. We shall survey the approximate GCD, fac-
torization, multiplicity structure and elimination problems in this section and derive
related matrix computation problems.

1.3.1 Approximate GCD

Given a polynomial pair(p,q) ∈ C[x]×C[x] of degreesm and n, respectively,
with

p(x) = p0 + p1x+ · · ·+ pmxm

q(x) = q0 +q1x+ · · ·+qnx
n,

we can write
p = uv and q = uw

where u = gcd (p,q) is the GCD along with cofactorsv and w. Then

p ·w−q ·v = [p, q]

[
w

−v

]

= 0. (1.20)

That is, the polynomial pair(v,w) belongs to the kernelK (Lp,q) of the linear
transformation

Lp,q : (r,s) −→ p ·s−q · r. (1.21)

Moreover, it is clear that the kernelK (Lp,q) is spanned by polynomial pairs in
the set

{
(x jv, x jw)

∣
∣ j = 0,1, · · ·

}
.

The classical Sylvester matrix

S(p,q) =

n
︷ ︸︸ ︷

m
︷ ︸︸ ︷











p0

p1

. . .

.

.

.
. . . p0

pm p1

. . .
.
.
.

pm

q0

q1

. . .

.

.

.
. . . q0

qn q1

. . .
.
.
.

qn











(1.22)

is the matrix representation of the linear transformationLp,q in (1.21) restricted in
the domain

{
(r,s)

∣
∣ deg(r) < n, deg(s) < m

}
. It becomes clear thatS(p,q) has a

nullity equals to k = deg(u) since the kernel of the restrictedLp,q is spanned by



1 Regularization and Matrix Computation in Numerical Polynomial Algebra 19

{
(v, w), (xv, xw), . . . , (xk-1v, xk-1w)

}
. Consequently, the (exact) GCD structure is

represented as the nullity of the Sylvester matrix:

deg
(

gcd (p,q)
)

= nullity (S(p,q)) .

For the problem of theapproximateGCD, the polynomial pair(p,q) is consid-
ered a perturbation from(p̂, q̂) residing in the GCD manifoldP

m,n
k (cf. Exam-

ple 1.2.3 in§1.2.1). Then

S(p,q) = S(p̂, q̂)+S(p− p̂,q− q̂).

Namely, the Sylvester matrixS(p,q) is near S(p̂, q̂) of nullity k with a distance
‖S(p− p̂,q− q̂)‖2 , and identifying the maximum codimension manifoldPm,n

k
becomes thenumericalrank/kernel problem of the Sylvester matrix.

After identifying the degreek of the approximate GCD, one can further restrict
the domain of the linear transformationLp,q as

{
(r,s)

∣
∣ deg(r) ≤ m−k, deg(s) ≤ n−k

}
.

The corresponding Sylvester submatrix

Sk(p,q) =

n−k+1
︷ ︸︸ ︷

m−k+1
︷ ︸︸ ︷











p0

p1

. . .

.

.

.
. . . p0

pm p1

. . .
.
.
.

pm

q0

q1

. . .

.

.

.
. . . q0

qn q1

. . .
.
.
.

qn











has a numerical kernel of dimension one and the coefficients of the cofactors v
and w can be obtained approximately from the lone basis vector of the numerical
kernel:

K
(
Sk(p,q)

)
= span

{[
[[v]]

−[[w]]

]}

.

An estimateof the coefficients of the approximate GCDu can then be obtained by
solving for the least squares solutionu in the linear systemu · v = f instead of
the unstable synthetic division.

The approximate GCD computed via numerical kernel and linear least squares
alone may not satisfy the minimum distance requirement. Theaccuracy of the com-
puted GCD depends on the numerical condition of the Sylvester submatrix Sk(p,q) ,
while the GCD sensitivity measured from (1.13) can be much healthier. Therefore,
the above matrix computation serves as stage I of the approximate GCD finding.
The Gauss-Newton iteration (c.f.§1.1.3) is needed to ensure the highest attainable
accuracy.

For a simple example [96], consider the polynomial pair
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f (x) = x7−.999999999999x6+x5−.999999999999x4+x3+.999999999999x2+x−.999999999999

g(x) = x6−3x3−x5 +2x2+x4−2x+2

possessing an exact GCD asgcd ( f ,g) = x2 + 1. Matrix computation alone can
only produceu≈ x2 +0.99992 with four-digit accuracy, while the Gauss-Newton
iteration attains the solution with a high accuracy near hardware precision. The
GCD condition number 3.55 shows the approximate GCD is not sensitive at all, but
the kernel sensitivity for the Sylvester matrix is quite high (≈ 1012).

The upper-bound of the distance to rank-deficiency for the Sylvester matrix

‖S(p− p̂,q− q̂)‖2 ≤ ‖S(p− p̂,q− q̂)‖F

=
√

n‖p− p̂‖2
2 +m‖q− q̂‖2

2 = θ ,

where ‖ · ‖F denotes the Frobenius norm [34,§2.3] of a matrix. However, rank-
deficiency within the above thresholdθ is only the necessary condition for the
given (p,q) to be near a GCD manifold. The converse is not true. This is an-
other reason why the iterative refinement is needed as Stage II for computing the
minimum distance and certifying the approximate GCD.

There is also a different approach for GCD computation [38, 47, 50, 104]: Com-
puting displacement polynomials∆ p and ∆q such that the Sylvester matrix (or
submatrix) S(p+ ∆ p,q+ ∆q) has a specified nullity. This approach leads to a
total least squares problem with special structures. This approach may have an ad-
vantage when there is a large distance from(p,q) to the GCD manifold beyond
the convergence domain of the Gauss-Newton iteration, and it theoretically seeks a
global minimum in comparison with the local minimum of the Gauss-Newton itera-
tion. An apparent disadvantage of this approach is that it issubject to the sensitivity
of the matrix kernel, not the actual GCD condition.

Both approaches can extend to multivariate GCD in a straightforward general-
ization. However, the matrix sizes may become huge when the number of indeter-
minates increases, and it may become necessary to reduce those sizes for the con-
sideration of both storage and computing time. A subspace strategy for this purpose
shall be discussed later in§1.4.2.

1.3.2 The multiplicity structure

For a polynomial ideal (or system)I = 〈 f1, f2 . . . , ft 〉 ⊂ C[x1, . . . ,xs] with an iso-
lated zero x̂ = (x̂1, . . . , x̂s) , the study on the multiplicity ofI at x̂ traces back to
Newton’s time with evolving formulations [26, pp. 127-129][60, 64, 84]. Several
computing methods for identifying the multiplicity have been proposed in the liter-
ature, such as [54, 62, 65, 88] and more recently in [6, 17, 94]. Here we elaborate
the dual basis approach that can be directly adapted to numerical kernel computa-
tion. This approach is originated by Macaulay [60] in 1916 and reformulated by
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Gröbner in 1939. For that reason it is also (somewhat inappropriately) referred to
as the Gröbner duality [64,§31.3].

A univariate polynomial f (x) has an m-fold zero x̂ if

f (x̂) = f ′(x̂) = · · · = f (m-1)(x̂) = 0 and f (m)(x̂) 6= 0.

The Macaulay/Gröbner duality can be considered a generalization of this multiplic-
ity to multivariate cases using partial differentiation functionals.

For an index arrayj = [ j1, · · · , js] ∈ Ns of non-negative integers, denote

xj = x j1
1 · · ·x js

s and (x−y)j = (x1−y1)
j1 · · · (xs−ys)

js.

Define a (differential) monomial functional at̂x ∈ Cs as

∂j [x̂] : C[x] −→ C, where ∂j [x̂](p) = (∂j p)(x̂) for any p∈ C[x].

Here, the differentiation operator

∂j ≡ ∂ j1··· js ≡ ∂
x

j1
1 ···xjs

s
≡

1
j1! · · · js!

∂ j1+···+ js

∂x j1
1 · · ·∂x js

s
. (1.23)

Namely, the monomial functional∂j [x̂] applying to a polynomial p equals the
partial derivative ∂j of p evaluated at x̂ . We may use ∂j for ∂j [x̂] when
the zero x̂ is clear from context. A (differential) functional at̂x ∈ Cs is a linear
combination of those∂j [x̂] ’s. The collection of all functionals at the zerôx that
vanish on the entire idealI forms a vector spaceDx̂(I) called thedual spaceof
I at x̂

Dx̂(I) ≡
{

c = ∑
j∈Ns

cj ∂j [x̂]
∣
∣
∣ c( f ) = 0, for all f ∈ I

}

(1.24)

where cj ∈ C for all j ∈ Ns. The dimension of the dual spaceDx̂(I) is the
multiplicityof the zero x̂ to the ideal I . The dual space itself forms the multiplicity
structure of I at x̂ .

For example, a univariate polynomialp having an m-fold zero x̂ if and only
if the dual space of the ideal〈p〉 at x̂ is spanned by functionals∂0 , ∂1 , . . . ,
∂m-1 . The ideal I = 〈x3

1, x2
1x2 +x4

2〉 has a zero(0,0) of multiplicity 12 with the
dual space spanned by [17]

1
︷︸︸︷

∂00 ,

2
︷ ︸︸ ︷

∂10, ∂01,

3
︷ ︸︸ ︷

∂20, ∂11, ∂02,

2
︷ ︸︸ ︷

∂12, ∂03,

2
︷ ︸︸ ︷

∂13, ∂04−∂21,

1
︷ ︸︸ ︷

∂05−∂22,

1
︷ ︸︸ ︷

∂06−∂23 (1.25)

and Hilbert function{1,2,3,2,2,1,1,0, · · ·} as a partition of the multiplicity 12.
The most crucial requirement for the dual space is theclosedness condition: For

c to be a functional in the dual spaceDx̂(I) , not only c( f1) = · · · = c( ft ) = 0,
but also c(p fi) = 0 for all polynomial p∈ C[x] and for i = 1, . . . ,t . Since all
differential functionals are linear, the closedness condition can be simplified to the
system of linear equations
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∑
k∈Ns, |k|≤α

ck∂k [x̂]
(
(x− x̂)j fi

)
= 0 (1.26)

for j ∈ N
s, j < k, and i ∈ {1, . . . ,s}.

in the coefficientscj ’s for sufficiently large α ∈ N .
For each α ∈ N , the equations in (1.26) can be expressed as a homogeneous

linear system in matrix form
Sα C = 0

where Sα is the Macaulay matrix of orderα , and each functional in the basis
for the dual space corresponds to a null vector ofSα andvice versa.The Hilbert
function

{
H(0) = 1,
H(α) = nullity (Sα )− nullity (Sα-1 ) for α = 1,2, . . . .

The (approximate) dual basis can be obtained by computing the (numerical) kernels
of S0 , S1 , . . . until reaching theα where the Hilbert functionH(α) = 0 [17].

The algorithm based on the above analysis and matrix kernel computation is im-
plemented as a computational routine MULTIPLICITY STRUCTURE in the software
package APATOOLS [99]. The algorithm is also applied to identifying the local
dimension of algebraic sets [3] as part of the software package BERTINI [4].

1.3.3 Numerical elimination

Numerical elimination with approximate data arises in manyapplications such as
kinematics [16, 21, 61, 87, 91, 90], and computational biology/chemistry [23, 25].
Numerical elimination methods have been studied in many reports, such as [1, 2,
21, 22, 42, 61, 70, 87, 90, 91]. The main strategy for the existing elimination ap-
proaches is using various resultants [32] whose computation requires calculating
determinants of polynomial matrices. There are formidableobstacles for calculat-
ing resultants using floating point arithmetic since determinant computation can be
inefficient and unstable. There is a new approach [95] that avoids resultant calcula-
tion and transforms the elimination to a problem of matrix rank/kernel computation.

Consider the ringC[x,y] of complex polynomials in variablesx and y, where
x is a single scalar variable andy may be either a scalar variable or a vector of
variables. For polynomialsf ,g∈ C[x,y] , there exist polynomialsp and q such
that

f p+gq = h

belongs to the first elimination ideal〈 f ,g〉∩C[y] of f and g, unless ( f ,g) has
a GCD with positive degree inx. We wish to calculatep, q and h with floating
point arithmetic. Since f p+ gq = h ∈ C[y] , there is an obvious homogeneous
equation
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∂
∂x

(
f p+gq

)
=

[
∂
∂x

f + f ·
∂
∂x

]

p+

[
∂
∂x

g+g ·
∂
∂x

]

q = 0. (1.27)

which leads to a simple strategy: Finding a polynomialf p+gq in the elimination
ideal 〈 f ,g〉 ∩C[y] is equivalent to computing the kernelK (Ln) of the linear
transformation

Ln : (p,q) −→

[
∂
∂x

f + f ·
∂
∂x

,
∂
∂x

g+g ·
∂
∂x

] [
p
q

]

(1.28)

in the vector spacePn of polynomial pairs p and q with degree n or less.
With proper choices of bases for the polynomial vector spaces, the linear transfor-
mation Ln induces anelimination matrix Mn where the rank-revealing method
elaborated in§1.1.2 produces the polynomialh= f p+gq in the elimination ideal.
The elimination algorithm based on matrix kernel computation can be outlined be-
low with a test version implemented in APATOOLS [99] as computational routine
POLYNOMIAL ELIMINATE .

For n = 1,2, · · · do

Update elimination matrix Mn
If Mn is rank deficient then

extract (p,q) from its kernel, break,
end if

end do

The method can be generalized to eliminating more than one variables from sev-
eral polynomials and, combined with numerical multivariate GCD, can be applied
to solving polynomial systems for solution sets of positivedimensions [95].

1.3.4 Approximate irreducible factorization

Computing the approximate irreducible factorization of a multivariate polynomial is
the first problem listed in “challenges in symbolic computation” [44] by Kaltofen.
The first numerical algorithm with an implementation is developed by Sommese,
Verschelde and Wampler [78, 79, 80]. Many authors studied the problem and pro-
posed different approaches [8, 7, 10, 12, 13, 27, 28, 40, 45, 73, 74, 75, 76]. In 2003,
Gao [29] proposed a hybrid algorithm and later adapted it as anumerical algorithm
[30, 46, 48] along with Kaltofen, May, Yang and Zhi. Here we elaborate the strate-
gies involved in numerical irreducible factorization fromthe perspective of matrix
computation.

The collection of polynomials sharing the structure of irreducible factorization
pm1

1 pm2
2 · · · pmk

k forms a factorization manifold which we denote asΠm1···mk
n1···nk , where

n j is the degree ofp j for j = 1, · · · ,k. Namely

Πm1···mk
n1···nk

=
{

pm1
1 pm2

2 · · · pmk
k

∣
∣ deg(p j) = n j for j = 1, . . . ,k

}
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For simplicity of exposition, consider the manifoldΠ1,1,1
n1n2n3 where polynomials

are square-free in two variablesx and y with three factors. An approximate
square-free factorization algorithm is implemented in APATOOLS [99] as a compu-
tational routing SQUAREFREEFACTOR which is a recursive application of approxi-
mate GCD computation [102].

The first task of factorization is to identify the reducibility of the polynomial,
the number of factors, and the degrees of each factor. The Ruppert approach[71]
for reducibility detection is very effective and can be easily explained using the
differential identity

∂
∂y

(
fx
f

)

=
∂
∂x

(
fy
f

)

for any function f . For a given polynomial f = p · q · r of bidegree [m,n] ,

applying this identity to the first factorp yields ∂
∂y

(
px
p · q·r

q·r

)

= ∂
∂x

(
py
p · q·r

q·r

)

,

namely
∂
∂y

(
px ·q · r

f

)

=
∂
∂x

(
py ·q · r

f

)

.

The same manipulation on the remaining factorsq and r reveals that the differ-
ential equation

∂
∂y

(
g
f

)

=
∂
∂x

(
h
f

)

in the unknown polynomial pair(g,h) has three linearly independent solutions

(g,h) = (pxqr, pyqr), (pqxr, pqyr), or (pqrx, pqry).

From this observation, it can be seen that the linear transformation

L f : (g,h) −→ f 2
[

∂
∂y

(
g
f

)

−
∂
∂x

(
h
f

)]

= [ f ·∂y− ∂y f ]g− [ f ·∂x− ∂x f ]h (1.29)

has a kernel whose dimension is identical to the number of irreducible factors of f
if we restrict the domain ofL f to those g and h of bidegrees[m−1,n] and
[m,n−1] respectively. As a result, the reducibility and the number of irreducible
factors in f can be identified by computing the nullity of the Ruppert matrix L f

corresponding to the linear transformationL f with a restricted domain. When
the polynomial f is inexact using floating-point arithmetic, the reducibility identi-
fication becomes numerical kernel problem.

Moreover, a vector in the numerical kernelKθ (L f ) selected at random corre-
sponds to polynomials

g = λ1pxqr + λ2pqxr + λ3pqrx
h = λ1pyqr + λ2pqyr + λ3pqry

with undetermined constantsλ1 , λ2 and λ3 . From f = pqr and
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g−λ1 fx = p[(λ2−λ1)qxr +(λ3−λ1)qrx],

we have identities associated with the unknownλ j ’s







p = gcd ( f , g−λ1 fx)
q = gcd ( f , g−λ2 fx)
r = gcd ( f , g−λ3 fx)

(1.30)

Select complex numbers ˆx and ŷ at random and consider univariate polynomials
p(x, ŷ) and p(x̂,y) in (1.30). Applying the nullity count of the Sylvester matrix
(1.22) elaborated in§1.3.1 yields that the Sylvester matrices

S
(

f (x, ŷ), g(x, ŷ)−λ1 fx(x, ŷ)
)

and S
(

f (x̂,y), g(x̂,y)−λ1 fx(x̂,y)
)

are of nullities identical to the degreesdegx(p) and degy(p) respectively. The un-
known value of λ1 then becomes the generalized eigenvalue of the matrix pencils
in the form of A−λB:

S
(

f (x, ŷ), g(x, ŷ)
)
−λS

(
0, fx(x, ŷ)

)
(1.31)

and
S
(

f (x̂,y), g(x̂,y)
)
−λS

(
0, fx(x̂,y)

)
. (1.32)

From the identities in (1.30), both pencils have the same eigenvaluesλ1 , λ2 and
λ3 of geometric multiplicities identical to the degreesdegx(p) , degx(q) and
degx(r) respectively for the pencil (1.31) and to the degreesdegy(p) , degy(q)

and degy(r) respectively for the pencil (1.32). As a result, finding the unknown
constantsλ j ’s in (1.30) and degree structures of the irreducible factors p, q and
r becomes generalized eigenvalue problem of matrix pencils in (1.31)–(1.32).

Computing eigenvalues with nontrivial multiplicities hasbeen a challenge in
numerical linear algebra. With new techniques developed in[103] on computing
the Jordan Canonical Form along with the known eigen-structure of the pencils
in (1.31)-(1.32), their generalized eigenvalues and multiplicities can be computed
efficiently and accurately in floating-point arithmetic even if the polynomials are
inexact.

In summary, Stage I of the numerical irreducible factorization can be accom-
plished with a sequence of matrix computations:

(a) Finding the numerical kernel of the Ruppert matrix by matrix rank/kernel com-
putation; followed by

(b) solving the generalized eigenproblem of pencils in (1.31)-(1.32) to obtain the
degrees of the irreducible factors and values ofλ j ’s; and concluded with

(c) computing approximate GCDs in (1.30) to obtain approximations to the irre-
ducible factors.

This stage of the computation identifies the maximum codimension factorization
manifold.
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In Stage II, the approximations of the factors obtained in Stage I are used as the
initial iterate for the Gauss-Newton iteration (1.11) applied on the overdetermined
system F(u,v,w) = 0 where

F(u,v,w) ≡

[
aHu−1
bHv−1

[[uvw− f ]]

]

.

The Jacobian ofF is injective (cf. Example 1.1.3 in§1.1.3, not without the aux-
iliary equations aH u = bH v = 1) at the solution (p,q, r) , ensuring the Gauss-
Newton iteration to be locally convergent.

1.4 A subspace strategy for efficient matrix computations

1.4.1 The closedness subspace for multiplicity matrices

The Macaulay matrixSα for the homogeneous system (1.26) can be undesirably
large when α increases. For example, consider the benchmark problem KSS
system [17, 54] ofn×n

f j(x1, · · · ,xn) = x2
j +

n

∑
ν=1

xν −2x j −n+1, for j = 1, . . . ,n (1.33)

for multiplicity computation at the zerôx = (1, . . . ,1) . The largest Macaulay ma-
trix required is 12012×3432 for n = 7 to obtain the multiplicity 64, and the
matrix size reaches 102960× 24310 for n = 8 for identifying the multiplic-
ity 128, exceeding the memory capacity of today’s desktop personal computers.
Therefore, reducing the size of the multiplicity matrices is of paramount importance.

The key idea, which is originated by Stetter and Thallinger [84, 88], is to employ
the closedness condition that can be rephrased in the following lemma.

Lemma 1.4.1.[84, Theorem 8.36]Let I ∈ C[x1, . . . ,xs] be a polynomial ideal
and let Dx̂(I) be its dual space at an isolated zerôx . Then every functional
c∈ Dx̂(I) satisfies sσ (c) ∈ Dx̂(I) for all σ ∈ {1, . . . ,s} where sσ is the linear
anti-differentiation operator defined by

sσ (∂ j1... js[x̂]) =

{
0, if jσ = 0

∂ j ′1... j
′
s
[x̂], otherwise

with j′σ = jσ −1 and j′i = j i for i ∈ {1, · · · ,s}\{σ} .

For example, the functional∂06−∂23 belongs to the dual spaceD0(I) spanned
by the functionals in (1.25) implies
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s1(∂06− ∂23) = 0− ∂13

s2(∂06− ∂23) = ∂05− ∂22

are both in D0(I) , as shown in (1.25). This property leads to the closedness
subspace strategy: After obtaining the dual subspace

D
α-1
x̂ (I) ≡ Dx̂(I) ∩ span

{
∂j [x̂]

∣
∣ |j | ≤ α −1

}

of order α −1, the additional basis functionals in the dual subspaceDα
x̂ (I) of

order α can be found in theclosedness subspace

C
α
x̂ (I) =

{

∑
j∈Ns,|j |≤α

cj ∂j [x̂]
∣
∣
∣ sσ (c) ∈ D

α-1
x̂ (I), σ = 1, . . . ,s

}

, (1.34)

of order α . An algorithm for computing the bases for closedness subspaces have
been developed in [100] using a sequence of numerical kernelcomputation involv-
ing matrices of much smaller sizes. Let{φ1, . . . ,φm} form a basis for the closed-
ness subspaceC α

x̂ (I) . Then the functionals in the dual subspaceDα
x̂ (I) can be

expressed in the form ofu1φ1 + · · ·+ umφm and can be computed by solving the
homogeneous linear system

u1φ1( fi)+ · · ·+umφm( fi) = 0, for i = 1, · · · t (1.35)

where f1, . . . , ft are generators for the idealI . In comparison with the linear
system (1.26), the system (1.35) consists of a fixed number (t ) of equations. Since
the solution space of (1.35) is isomorphic to the dual subspace Dα

x̂ (I) , the number
m of unknowns ui ’s is bounded by

m ≤ dim
(
D

α
x̂ (I)

)
+ t.

The process of identifying the closedness subspaceC α
x̂ (I) and finding dual basis

functionals can be illustrated in the following example.

Example 1.4.2. Use the dual basis in (1.25) as an example. To identify the closed-
ness subspaceC 4

0 (I) after obtaining the dull subspace and the closedness subspace
of order 3

D
3
0(I) = span{∂00, ∂10, ∂01, ∂20, ∂11, ∂02, ∂12, ∂03}

C
3
0 (I) = span{∂00, ∂10, ∂01, ∂20, ∂11, ∂02, ∂30, ∂21, ∂12, ∂03}.

The monomial functionals∂22, ∂31, and ∂40 can be excluded sinces2(∂22) =
s1(∂31) = ∂21 and s1(∂40) = ∂30 are not in the monomial support ofD3

0(I) . As
a result, we have

C
4
0 (I) ⊂ span{∂00, ∂10, ∂01, ∂20, ∂11, ∂02, ∂30, ∂21, ∂12, ∂03, ∂04, ∂13}

and every functional inC 4
0 (I) can be written as
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φ = γ1∂00+ γ2∂10+ γ3∂01+ · · ·+ γ10∂04+ γ11∂13.

The closedness conditionss1(φ),s2(φ) ∈ D3
0(I) become







γ1∂00+ γ3∂10+ γ4∂01+ γ6∂20+ γ7∂11+ γ8∂02+ γ11∂03

= η1∂00+ η2∂10+ · · ·+ η8∂03

γ2∂00+ γ4∂10+ γ5∂01+ γ7∂20+ γ8∂11+ γ9∂02+ γ10∂03+ γ11∂12

= η9∂00+ η10∂10+ · · ·+ η16∂03

.

These equations lead to

[γ1, γ2, . . . ,γ11]
> = [η1, η9, η2, η3, η11, η4, η5, η6, η14, η16, η8]

> (1.36)

along with

γ4 = η3 = η10, γ7 = η5 = η12, γ8 = η6 = η13, γ11 = η8 = η15, η7 = 0.

Consequently, we have a system of homogeneous equations

η3−η10 = η5−η12 = η6−η13 = η8−η15 = η7 = 0. (1.37)

Since a basis forC 3
0 (I) is already obtained, we need only additional basis func-

tionals in C 4
0 (I) by requiring

φ ⊥ C
3
0 (I). (1.38)

In general, systems of equations in (1.36), (1.37) and (1.38) can be written in matrix
forms






γ1
...

γm




 = A






η1
...

ηn




 , B






η1
...

ηn




 = 0, and C






η1
...

ηn




 = 0

respectively. Thus the problem of identifying the closedness subspace becomes the

(numerical) kernel problem of the matrix
[

B
C

]

, from which we obtain






η1
...

ηn




 = N






µ1
...

µk




 , and thus






γ1
...

γm




 = AN






µ1
...

µk




 .

In this example,γ1 = · · · = γ9 = 0 and
[

γ10

γ11

]

=

[
0 1
1 0

][
µ1

µ2

]

implying
C

4
0 (I) = C

3
0 (I)⊕ span{∂13, ∂04}
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where additional dual basis functionals∂13 and ∂04− ∂21 in D4
0(I) are solved

in the equation (1.35). ut

Preliminary experiments show that the closedness subspacestrategy tremen-
dously improves the computational efficiency over its predecessor implemented
in ApaTools as the moduleMultiplicityStructure in both memory and
computing time. For instance,MultiplicityStructure can handle only
n≤ 6 for the KSS system (1.33) with multiplicity 42 before running out of memory.
The new code increase the capacity ton = 9 with multiplicity 256. Moreover, the
new code is as much as 76 times faster on the KSS system atn = 6. The speed up
reaches thousands on some large systems with low multiplicities [100].

1.4.2 The fewnomial subspace strategy for multivariate
polynomials

A vector space of multivariate polynomials within a degree bound may have huge
dimensions. For example, we can construct a simple GCD test problem with

{
p = (x1 + · · ·+xn−1)

(
x1(xn

2 + · · ·+xn
n)+2

)
,

q = (x1 + · · ·+xn−1)
(
xn(xn

1 + · · ·+xn
n-1)−2

) (1.39)

in expanded form. Forn = 10, the dimension of the vector space of polynomial
pairs within total degreen+2 is 1,293,292, while bothp and q are “fewnomi-
als” of only 110 terms. To compute the approximate GCD of(p,q) , the standard
Sylvester matrix has a size as large as 92,561,040×705,432 requiring nearly 500
terabytes of memory. It is not practical to construct such a large matrix on a desktop
computer.

To compute the approximate GCD of such polynomial pairs, we employ a sim-
ple fewnomial subspace strategyfor reducing the sizes of matrices required for the
computation by identifying the monomial support of the GCD and the cofactors.
The strategy is similar to the sparse interpolation approach in [15, 33, 105] that is
applied to other polynomial problems [30, 48, 51].

We shall use the polynomial pair in (1.39) as an example forn = 3 to illustrate
the fewnomial subspace strategy.

Example 1.4.3. Consider the polynomial pair

p(x1,x2,x3) = (x1 +x2 +x3−1)(x1x3
2 +x1x3

3 +2)

q(x1,x2,x3) = (x1 +x2 +x3−1)(x3
1x3 +x3

2x3−2)

with u = gcd (p,q) and cofactorsv and w. Assign fixed random unit complex
values ˆx2 = .8126623341− .5827348718i and x̂3 = .8826218380+ .4700837065i in
(p,q) and compute its univariate approximate GCD inx1 , obtaining
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p(x1, x̂2, x̂3) = (x1 + .6953− .1127i)(−(0.1887− .0381i)x1+2)

q(x1, x̂2, x̂3) = (x1 + .6953− .1127i)((.8826+ .4701i)x3
1−1.807− .9813i)

(showing 4 digits for each number), implying

u(x1, x̂2, x̂3) ∈ span{1, x1}, (1.40)

v(x1, x̂2, x̂3) ∈ span{1, x1}, w(x1, x̂2, x̂3) ∈ span{1, x3
1}. (1.41)

Similarly, we can apply univariate GCD inx2 and

u(x̂1,x2, x̂3) ∈ span{1, x2}, (1.42)

v(x̂1,x2, x̂3) ∈ span{1, x3
2}, w(x̂1,x2, x̂3) ∈ span{1, x3

2} (1.43)

u(x̂1, x̂2,x3) ∈ span{1,x3}, (1.44)

v(x̂1, x̂2,x3) ∈ span{1, x3
3}, w(x̂1, x̂2,x3) ∈ span{1, x3} (1.45)

Consequently, combining the monomial bases in (1.40)-(1.43) yields three fewno-
mial subspaces

u(x1,x2, x̂3) ∈ span{1, x1, x2, x1x2},

v(x1,x2, x̂3) ∈ span{1, x1, x3
2, x1x3

2},

w(x1,x2, x̂3) ∈ span{1, x3
1, x3

2, x3
1x3

2}.

In these subspaces we compute bivariate GCD of(p,q) in x1 and x2 :

p(x1,x2, x̂3) = (x1 +x2− .1174+ .4701i)(x1x3
2 +(.1025+ .9947i)x1 +2)

q(x1,x2, x̂3) = (x1 +x2− .1174+ .4701i)((.8826+ .4701i)x3
1 +(.8826+ .4701i)x3

2−2).

Combining monomial bases in (1.44) and (1.45) yields the fewnomial subspaces

u ∈ span{1, x1, x2, x3, x1x3, x2x3},

v ∈ span{1, x1, x1x3
2, x3

3, x1x3
3, x1x3

2x3
3},

w ∈ span{1, x3
1, x3

2, x3, x3
1x3, x3

2x3}.

where u, v and w are computed as approximations to

u = x1 +x2+x3−1, v = x1x3
2 +x1x2

3 +2, w = x3
1x3 +x3

2x3−2

ut

The process in Example 1.4.3 can be extended to general casesof computing the
approximate GCD of multivariate polynomials inC[x1, · · · ,xs] : For k= 1,2, . . . ,s,
compute the approximate GCD of

p(x1, . . . ,xk, x̂k+1, . . . , x̂s)

q(x1, . . . ,xk, x̂k+1, . . . , x̂s)
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in x1, . . . ,xk with remaining variables fixed using random unit complex constants
x̂k+1, . . . , x̂s. Then we can identify the monomial subspaces foru, v and w in
the first k+1 variables, and on those subspaces we can compute the approximate
GCD of (p,q) in the first k+1 variables. Continuing this process we complete
the GCD computation atk = s. This simple technique is tremendously effective in
practical computations for sparse polynomials. For the case, sayn = 10 in (1.39),
the largest Sylvester matrix on the fewnomial subspaces hasonly 40 columns, which
is quite a reduction from 705,432.

1.5 Software development

Numerical polynomial algebra is a growing field of study withmany algorithms
that are still in early stages of development. Nonetheless,many software packages
are already available. Most advanced software packages areperhaps the polyno-
mial system solvers based on the homotopy continuation method [57, 82], including
PHCPACK [35, 89], BERTINI [4, 5] and MIXEDVOL [31]. There are also special-
ized implementations of algorithms such as approximate GCDfinder QRGCD [14]
that is bundled in recent Maple releases, approximate factorization [48], multiplic-
ity structure [6, 88], SNAP package [41] bundled in Maple, univariate factorization
and multiple root solver MULTROOT [97], SYNAPS package [66], and COCOA
[9, 55, 56], etc. Those packages provide a broad range of versatile tools for appli-
cations and academic research.

A comprehensive software toolbox APATOOLS is also in development for ap-
proximate polynomial algebra with a preliminary release [99]. APATOOLS is built
on two commonly used platforms: Maple and Matlab. The Matlabversion is named
APALAB. There are two objectives for designing APATOOLS: Assembling robust
computational routines as finished product for applications as well as providing a
utility library as building blocks for developing more advanced algorithms in nu-
merical polynomial algebra. Currently, APATOOLS includes the following compu-
tational routines:

UVGCD: univariate approximate GCD finder (§1.3.1)

MV GCD: multivariate approximate GCD finder (§1.3.1)

UVFACTOR: univariate approximate factorization with multiplicities (§1.2.2)

SQUAREFREEFACTOR: multivariate squarefree factorization (§1.3.4)

MULTIPLICITY STRUCTURE: dual basis and multiplicity identification (§1.3.2)

POLYNOMIAL ELIMINATE : numerical and symbolic elimination routine (§1.3.3)

APPROXIRANK : numerical rank/kernel routine (§1.1.2)

NUMJCF: (APALAB only) function for computing the approximate Jordan
Canonical Form of inexact matrices (§1.2.2)
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Those routines implement algorithms that solve ill-posed algebraic problems for
approximate solutions formulated based on the three-strikes principle elaborated
in §1.2.2 via a two-staged process: Finding the maximum codimension pejorative
manifold by matrix computation, followed by minimizing thedistance to the mani-
fold via the Gauss-Newton iteration.

As a growing field of study, numerical polynomial algebra algorithms are in con-
tinuing development. APATOOLS consists of a comprehensive collection of utility
routines designed to simplify software implementation foralgorithms. Those utili-
ties include matrix computation tools such as orthogonal transformations and other
manipulations, index utilities, monomial utilities, and so on. The two most notable
utilities are matrix builder LINEARTRANSFORMMATRIX that conveniently gener-
ate matrices from linear transformations between polynomial vector spaces, and the
nonlinear least squares solver GAUSSNEWTON for minimizing the distance to a pe-
jorative manifold. Both routines are designed with a priority on simplicity for users
and with options to maximize efficiency, as illustrated in the following examples.

Example 1.5.1. Construction of Ruppert matrices in ApaTools. The Ruppert
matrix (cf.§1.3.4) is the matrix represents the linear transformationL f in (1.29)
from a given polynomial f of bidegree [m,n] , say

f = 2x3y3−5x2y5 +x2y+6x2y2−15xy4+3x−4xy2+10y4−2

of bidegree [3,5] . The linear transformation is a combination of the linear trans-
formations

L{,‖ : u −→ [{ ·∂‖− ∂‖{]u, ‖ = ∞,∈ (1.46)

A Maple user needs to write a straightforward three-line Maple procedure for this
linear transformation:

> RupLT := proc( u, x, f, k)
return expand( f * diff(u,x[k]) - diff(f,x[k]) * u )

end proc:

Then the Ruppert matrix is constructed instantly by calling

> R := < LinearTransformMatrix(RupLT,[f,2],[x,y],
[m-1,n],[2 * m-1,2 * n-1]) |

LinearTransformMatrix(RupLT,[f,1],[x,y],
[m,n-1],[2 * m-1,2 * n-1]) >;

R:=





60 x 38 Matrix
Data Type: anything
Storage: rectangular
Order: Fortranorder





Here, the input items[f,1] and[f,2] indicate the linear transformationL{,∞
and L{,∈ respectively, [x,y] is the list of indeterminates,[m-1,n] and
[m,n-1] are the bidegree bounds on the domains of the linear transformations,
and [2 * m-1,2 * n-1] is the bidegree bound of the range. Applying the numerical
kernel routine APPROXIRANK
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> r, s, N := ApproxiRank(R,[1e-8]);

yields the numerical nullity 2 that reveals the number of irreducible factors of f .
ut

Example 1.5.2. Applying the Gauss-Newton iteration in factorization. After
obtaining an initial approximation

u1 = −1.99999+2.99999x+x2y

u2 = .99998+2xy2−4.99998y4

to the irreducible factors of the polynomialf in Example 1.5.1, we seek the least
squares solution to the overdetermined system of equations

{
φHu1−1 = 0

[[u1 ·u2− f ]] = 0

(cf. Example 1.1.3 and§1.3.4). A user needs to write a straightforward Maple pro-
cedure for this system of equations

> FacFunc := proc( w, x, f, phi)
return [PolynomialDotProduct( phi,w[1],x)-1,

expand(w[1] * w[2])-f]
end proc;

prepare input data and make a call on the ApaTools routing GAUSSNEWTON

> factors, residual := GaussNewton(FacFunc,[u1,u2],
[[x,y],f,phi], [1e-12,9,true]);

Gauss-Newton step 0, residual = 1.71e-04
Gauss-Newton step 1, residual = 4.82e-10
Gauss-Newton step 2, residual = 3.46e-14

f actors, residual := [−2.00000714288266+3.00001071432397x+

1.00000357144133x2y, .999996428571430+1.99999285714286xy2−

4.99998214285715y4] , .346410161513776 10−13

The result shows computed irreducible factors with a backward error 3.5×10-14,
and the factors with a scaling

−2.00000000000000+2.99999999999998x+1.00000000000000x2y

and

1.00000000000000+2.00000000000001xy2−5.00000000000002y4

are accurate near hardware precision. ut
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APATOOLS is an on-going project with its functionality and library still expand-
ing. We wish to build a comprehensive software toolbox for applications and algo-
rithm development. The near term plan is to incorporate approximate irreducible
factorization, fully implement the closedness/fewnomialsubspace strategy for en-
hancing the efficiency, and collect a library of benchmark test problems for numer-
ical polynomial algebra.
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L. Zhi, editors, Birkhäuser Verlag, Basel, Switzerland, (2007), pp. 69–83.

48. , Approximate factorization of multivariate polynomials using singular value decom-
position, J. of Symbolic Computation, 43 (2008), pp. 359–376.

49. E. KALTOFEN, Z. YANG, AND L. ZHI, Structured low rank approximation of a Sylvester
matrix, Symbolic-Numeric Computation, D. Wang and L. Zhi, Eds, Trend in Mathematics,
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