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Barry H. Dayton∗ Tien-Yien Li† Zhonggang Zeng‡

September 6, 2009

Abstract

As an attempt to bridge between numerical analysis and algebraic geometry, this paper
formulates the multiplicity for the general nonlinear system at an isolated zero, presents an al-
gorithm for computing the multiplicity strucuture, proposes a depth-deflation method for accu-
rate computation of multiple zeros, and introduces the basic algebraic theory of the multiplicity.
Furthermore, this paper elaborates and proves some fundamental theorems of the multiplicity,
including local finiteness, consistency, perturbation invarance, and depth-deflatability. The pro-
posed algorithms can accurately compute the multiplicity and the multiple zeros using floating
point arithmetic even if the nonlinear system is perturbed.

1 Introduction

Solving a system of nonlinear equations in the form

f(x) = 0 or







f1(x1, . . . , xs) = 0
...

...
ft(x1, . . . , xs) = 0

(1)

with f = [f1, . . . , ft]
H and x = (x1, . . . , xs) is one of the most fundamental problems in scientific

computing, and one of the main topics in most numerical analysis textbooks. In the literature,
however, an important question as well as its answer seem to be absent over the years: What is
the multiplicity of an isolated zero to the system and how to identify it.

For a single equation f(x) = 0, it is well known that the multiplicity of a zero x∗ is m if

f(x∗) = f ′(x∗) = · · · = fm-1(x∗) = 0 and f (m)(x∗) 6= 0. (2)

The multiplicity of a polynomial system at a zero has gone through rigorous formulations since
Newton’s era [6, pp. 127-129] as one of the oldest subjects of algebraic geometry. Nonetheless, the
standard multiplicity formulation and identification via Gröbner bases for polynomial systems are
somewhat limited to symbolic computation, and largely unknown to numerical analysts.
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As an attempt to bridge between algebraic geometry and numerical analysis, we propose a rigorous
formulation for the multiplicity structure of a general nonlinear system at a zero. This multiplicity
structure includes, rather than just a single integer for the multiplicity, several structural invariances
that are essential in providing characteristics of the system and the computation of the zero. For
instance, at the zero x∗ = (0, 0) of the nonlinear system

{
sinx1 cos x1 − x1 = 0
sin x2 sin2 x1 + x4

2 = 0
(3)

we shall have:

• The multiplicity m = 12.

• Under a small perturbation to the system (3), there is a cluster of exactly 12 zeros (counting
multiplicities) in a neighborhood of x∗ = (0, 0).

• The Hilbert function {1, 2, 3, 2, 2, 1, 1, 0, 0, · · · } forms a partition of the multiplicity 12.

• There exist 12 linearly independent differential operators ∂00, ∂10, . . . , ∂05 −∂22, ∂06 −∂23,
grouped by the differential orders and counted by the Hilbert function as shown in Figure 1
below. They induce 12 differential functionals that span the dual space associated with the
system (3). Here, the differential operator

∂j1···js ≡ ∂
x

j1
1
···xjs

s
≡ 1

j1! · · · js!

∂j1+···+js

∂xj1
1 · · · ∂xjs

s

(4)

naturally induces a linear functional

∂j1···js [x∗] : f −→ (∂j1···jsf)(x∗) (5)

on s-variate functions f with the existence of the indicated partial derivative at the zero
x∗. These functionals satisfy a closedness condition and vanish on the two functions in (3)
at the zero (0, 0).

• The breadth, or the nullity of the Jacobian at x∗, is 2.

• The depth, which is the highest differential order of the functionals at x∗, is 6.

Figure 1: Illustration of the multiplicity structure, including dual basis, Hilbert function, breadth and depth of the
system (3) at the zero (0, 0)

Such a multiplicity structure at an isolated zero of a general nonlinear system will be introduced
in §2. The theoretical foundation of those structures will be established in §4. In particular,
we prove the so-defined multiplicity agrees with the intersection multiplicity of polynomial systems
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in algebraic geometry. It is finite if and only if the zero is isolated, and more importantly, this
finiteness ensures termination of the multiplicity identification algorithm NonlinearSystemMul-

tiplicity given in §2.3, and it also provides a mechanism for determining whether a zero is isolated
[2]. Furthermore, the multiplicity structure of the given nonlinear system can be computed by
constructing the Macaulay matrices [14] together with the numerical rank revealing [13].

It is well documented that multiple zeros are difficult to compute accurately even for a single
equation. There is a perceived barrier of “attainable accuracy”: The number of correct digits
attainable for a multiple zero is bounded by the number of digits in the hardware precision divided
by the multiplicity. For instance, only three correct digits can be expected in computing a five-
fold zero using the double precision (16 digits) floating point arithmetic. Such a barrier has been
overcome for univariate polynomial equations [27]. Based on the multiplicity theory established
in this article, we shall derive a depth-deflation algorithm in §3 for computing multiple zeros of
general nonlinear systems, which can accurately compute the multiple zeros without extending
the arithmetic precision even when the nonlinear system is perturbed. The depth defined in
the multiplicity structure actually bounds the number of deflation steps. A related multiplicity
deflation method is used in [11] for the main goal of speeding up Newton’s iteration.

As mentioned above, the study of the multiplicity for a polynomial system at an isolated zero can
be traced back to Newton’s time [6, pp. 127-129]. Besides polynomial systems, multiple zeros of a
nonlinear system occur frequently in scientific computing. For instance, when the system depends
on certain parameters, a multiple zero emerges when the parameters reach a bifurcation point [3,
§1.1]. Accurate computation of the multiple zero and reliable identification of the multiplicity
structure may have a profound ramification in scientific computing.

This paper furnishes the theoretical details of the preliminary results on polynomial systems an-
nounced in the form of an abstract [5], and in addition, the scope of this work has been substantially
expanded to general nonlinear systems.

2 Formulation and computation of the multiplicity structure

2.1 The notion and fundamental theorems of the multiplicity

The general nonlinear system (1) is represented by either the mapping f : Cs −→ Ct or the set
F = {f1, . . . , ft} of functions in variables x1, . . . , xs. We assume functions f : Cs −→ C in this
paper have all the relevant partial derivatives arising in the elaboration. The multiplicity which
we shall formulate in this section will extend both the multiplicity (2) of a single equation and the
Macaulay-Gröbner duality formulation of multiplicity for polynomial systems.

Denote N = {0,±1,±2, . . .}. For an integer array j = (j1, . . . , js) ∈ Ns, write j ≥ 0 if ji ≥ 0
for all i ∈ {1, . . . , s}. For every j = (j1, · · · , js) ∈ Ns with j ≥ 0, denote

xj = xj1
1 · · · xjs

s and (x− y)j = (x1 − y1)
j1 · · · (xs − ys)

js ,

and differential functional monomial ∂j[x̂] at x̂ ∈ Cs as in (5), with order |j| = j1 + · · · + js.
For simplicity, we adopt the convention

∂j[x̂](f) ≡ 0 for all f whenever j 6≥ 0 (6)
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throughout this paper. A linear combination c = cj1∂j1 [x̂] + · · ·+ cjk∂jk [x̂] is called a differential
functional, which will produce a set of numbers c(F ) = {c(f1), . . . , c(ft)} when applied to the
system F = {f1, . . . , ft}. For differential functionals, the linear anti-differentiation transformation
φi is defined by φi

( ∑

j cj∂j[x̂]
)

=
∑

j cjφi

(
∂j[x̂]

)
with

φi

(
∂j1...js [x̂]

)
= ∂j′

1
...j′s

[x̂] where j′σ =

{
ji if σ 6= i

ji−1 if σ = i
(7)

for i = 1, . . . , s. From (6), we have φi(∂j[x̂]) = 0 if ji = 0. With these differential functionals
and the linear transformations, we now formulate the multiplicity at a zero x̂ of the nonlinear
system (1) as follows.

Definition 1 Let F = {f1, . . . , ft} be a system of functions having derivatives of order γ ≥ 1
at a zero x̂ ∈ Cs. Let D0

x̂(F ) = span{∂0...0} and

Dα
x̂(F ) =

{

c =
∑

j∈Ns, cj∈C, |j|≤α

cj∂j[x̂]
∣
∣
∣ c(F ) = {0}, φi(c) ∈ Dα-1

x̂ (F ), ∀ i = 1, . . . , s
}

(8)

for α = 1, 2, . . . , γ. We shall call such sets dual subspaces. If Dγ
x̂
(F ) = Dγ-1

x̂
(F ), then the vector

space

Dx̂(F ) =

γ-1
⋃

α=0

Dα
x̂(F ) ≡ Dγ

x̂
(F ) (9)

is called the dual space of the system F at x̂. The dimension dim
(
Dx̂(F )

)
is called the

multiplicity of F at x̂.

Notice that those dual subspaces Dα
x̂(F )’s strictly enlarge as the differential order α increases

before reaching certain α = µ. Namely

D0
x̂(F ) ( D1

x̂(F ) ( · · · ( Dδ
x̂(F ) = Dδ+1

x̂
(F ) = · · · = Dγ

x̂
(F ) = Dx̂(F ).

The integer δ, called the depth which will be defined later, is the highest order of differential
functionals in the dual space.

We may also denote the dual space as Dx̂(f) when the nonlinear system is represented as a
mapping f = [f1, . . . , ft]

>. It is important to note that vanishing at the system c(F ) = {0} is
insufficient for the functional c to be in the dual space Dx̂(F ). This becomes more transparent
in single equation f(x) = 0 where the multiplicity is not the number of vanishing derivatives
f (k)(x) = 0 at a zero x∗. For instance, infinite number of functionals ∂0[0], ∂2[0], ∂4[0], . . .
vanish at the 1× 1-system {sin x}, since derivatives sin(2k) 0 = 0 for all integers k ≥ 0. Among
these functionals, however, only ∂0[0] ∈ D0({sin x}) since

φ1(∂2k[0])(sin x) = ∂2k−1[0](sin x) = (−1)k-1

(2k−1)! cos 0 6= 0,

namely ∂2k[0] 6∈ D0({sin x}) for all k ≥ 1, and therefore the multiplicity of sin x is one at
x = 0. The crucial closedness condition

φi(c) ∈ Dx̂(F ) for all c ∈ Dx̂(F ) and i = 1, . . . , s (10)

in Definition 1 requires the dual space Dx̂(F ) to be invariant under the anti-differentiation trans-
formation φi’s. The following lemma is a direct consequence of the closedness condition.
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Lemma 1 A differential functional c is in the dual space Dx̂(F ) of the nonlinear system
F = {f1, . . . , ft} at the zero x̂ if and only if

c
(
(x − x̂)jfi(x)

)
= 0 for any i ∈ {1, . . . , t} and j ∈ Ns with j ≥ 0. (11)

Proof. For any j = (j1, . . . , js), k = (k1, . . . , ks), and function f , the Leibniz rule of derivatives
yields

∂j[x̂]
(
(x − x̂)kf(x)

)
= ∂j-k[x̂](f) ≡

(
φk1

1 ◦ φk2

2 ◦ · · · ◦ φks
s

)
(∂j[x̂])(f). (12)

The equation (11) holds because of the closedness condition (10) and the linearity of c. �

The dual space Dx̂(F ) itself actually contains more structural invariants of the multiple zero
beyond the multiplicity for the system F . Via dual subspaces Dα

x̂(F ), a Hilbert function h : N → N

can be defined as follows:
{

h(0) = dim
(
D0

x̂(F )
)
≡ 1

h(α) = dim
(
Dα

x̂(F )
)
− dim

(
Dα−1

x̂
(F )

)
for α ∈ { 1, 2, . . . }. (13)

The algebraic meaning of this Hilbert function will be elaborated in §4. This Hilbert function is
often expressed as a infinite sequence {h(0), h(1), . . .}, with which we introduce the breadth and
the depth of dual space Dx̂(F ), denoted by βx̂(F ) and δx̂(F ) respectively, as follows:

βx̂(F ) = h (1) and δx̂(F ) = max{α | h (α) > 0 }.

In other words, the breadth is the nullity of the Jacobian at x̂ for the system (1) and the depth
is the highest differential order of functionals in Dx̂(F ). They are important components of the
multiplicity structure that dictate the deflation process for accurate computation of the multiple
zero (c.f. §3)

In contrast to the system (3), the system {x2
1 sin x1, x2

2 − x2
2 cos x2} also has a zero (0, 0) of

multiplicity 12 but a different Hilbert function {1, 2, 3, 3, 2, 1, 0, · · · } and a dual space spanned by

1
︷︸︸︷

∂00 ,

2
︷ ︸︸ ︷

∂10, ∂01,

3
︷ ︸︸ ︷

∂20, ∂11, ∂02,

3
︷ ︸︸ ︷

∂21, ∂12, ∂03,

2
︷ ︸︸ ︷

∂13, ∂22,

1
︷︸︸︷

∂23 (14)

The polynomial system {x3
2, x2 − x2

3, x3 − x2
1} at origin is again 12-fold with Hilbert function

{1, · · · , 1, 0, · · · } and a dual space basis

1
︷︸︸︷

∂000 ,

1
︷︸︸︷

∂100 ,

1
︷ ︸︸ ︷

∂200 + ∂001, · · · ,

1
︷ ︸︸ ︷

∂400 + ∂201 + ∂002 + ∂010,

· · · ,

1
︷ ︸︸ ︷

∂800 + ∂601 + ∂402 + ∂203 + ∂410 + ∂004 + ∂211 + ∂012 + ∂020

· · · ,

1
︷ ︸︸ ︷

∂11,00 + ∂901 + ∂702 + ∂710 + ∂503 + ∂511 + ∂304 + ∂312 + ∂105 + ∂320 + ∂113 + ∂121 .

(15)

The last example is of special interest because, as a breadth-one case, its dual space can be computed
via a simple recursive algorithm (c.f. §2.3). The dual bases in (14) and (15) are calculated by
applying the algorithm NonlinearSystemMultiplicity provided in §2.3 and implemented in
ApaTools [28].

5



We now provide justifications for our multiplicity formulation in Definition 1 by its basic properties.
First of all, the multiplicity is a direct generalization of the multiplicity (2) of univariate functions,
where the dual space is

Dx∗(f) = span{∂0[x∗], ∂1[x∗], . . . , ∂m-1[x∗]}

with Hilbert function {1, 1, . . . , 1, 0, . . .} as well as breadth one and depth m−1. Secondly,
the multiplicity is well defined for analytic systems as a finite positive integer at any isolated zero
x̂, as asserted by the Local Finiteness Theorem below. Namely, the process of calculating the
multiplicity will always terminate at certain γ when Dγ

x̂
(F ) = Dγ-1

x̂
(F ). The dual subspace

dimensions dim
(
D0

x̂(F )
)
≤ dim

(
D1

x̂(F )
)
≤ dim

(
D2

x̂(F )
)
≤ · · · can be unbounded if the zero is in

a higher dimensional set of zeros. For example, the dual subspaces Dα
(0,0)({sin(x2), x cos(y)})

never stop expanding since infinitely many linearly independent functionals ∂y[(0, 0)], ∂y2 [(0, 0)],
∂y3 [(0, 0)], . . . satisfy the closedness condition and vanish at the zero (0, 0). The reason is that
(0, 0) is not an isolated zero of the system {sin(x2), x cos y} for which the zero set {(0, y)} is
the entire y-axis.

Theorem 1 (Local Finiteness Theorem) Let F = {f1, . . . , ft} be a system of analytic func-
tions of s variables x = (x1, . . . , xs) in an open set U ⊂ Cs and x̂ ∈ U is a zero of F . Then
x̂ is an isolated zero of F if and only if

sup
α≥0

dim
(
Dα

x̂(F )
)

< ∞

so that the multiplicity dim
(
Dx̂(F )

)
is well defined at an isolated zero.

This theorem ensures the multiplicity computation at an isolated zero will terminate in finitely
many steps. It also provides a mechanism for identifying nonisolated zeros [2].

When the nonlinear system P consists of polynomials p1, . . . , pt in the variables x1, . . . , xs,
the multiplicity theory, i.e. the intersection multiplicity at a zero of such a special system, has
been well studied in algebraic geometry. The following theorem asserts that the multiplicity
dim

(
Dx̂(P )

)
formulated in Definition 1 in this special case is identical to the intersection multiplicity

of polynomial systems in algebraic geometry.

Theorem 2 (Multiplicity Consistency Theorem) Let P = {p1, . . . , pt} be a system of poly-
nomials in the variables x1, . . . , xs with complex coefficients. Then the multiplicity dim

(
Dx̂(P )

)

defined in Definition 1 is identical to the intersection multiplicity of the system P at the isolated
zero x̂.

The following Perturbation Invariance Theorem asserts that the multiplicity as defined equals to
the number of zeros “multiplied” from a multiple zero when the system is perturbed. As a result,
Definition 1 is intuitively justified.

Theorem 3 (Perturbation Invariance Theorem) Let F = {f1, . . . , fs} be a system of
functions that are analytic in a neighborhood Ω of an isolated zero x̂ ∈ Cs with multiplic-
ity m = dim

(
Dx̂(F )

)
. Assume x̂ is the unique zero of F in Ω. Then, for any func-

tions g1, . . . , gs that are analytic in Ω, there exists a θ > 0 for which the perturbed system
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Fε = {f1 +εg1, . . . , fs +εgs} has exactly m zeros in Ω counting multiplicities for all 0 < ε < θ.
More precisely, assuming {x̃1, . . . , x̃k} = F−1

ε (0) ∩ Ω are the zeros of Fε in Ω, we have

m = dim
(
Dx̂(F )

)
= dim

(
Dx̃1

(Fε)
)

+ · · · + dim
(
Dx̃k

(Fε)
)
.

We may illustrate this theorem by a computing experiment on the following example.

Example 1 Consider the system F = {sin x cos y−x, sin y sin2 x−y2} having multiplicity 6 at
the zero (0, 0). In a small neighborhood of (0, 0), we compute the zeros of the perturbed system

Fε = {sin x cos y − x − ε, sin y sin2 x − y2 + ε} (16)

for small values of ε. A cluster of exactly 6 zeros of Fε near (0, 0) are found by Newton’s
iteration using zeros of the truncated Taylor series of Fε as the initial iterates, matching the
multiplicity of the system F at (0, 0). Table 1 shows the zeros of Fε for ε = 10-8 and 10-12.
The cluster as shown shrinks to (0, 0) when the perturbation decreases in magnitude. �

ε = 10−8

x1, x2 (−0.0039173928 ∓ 0.0000003908 i, − 0.0000076728 ± 0.0000997037 i)

x3, x4 ( 0.0019584003 ± 0.0033883580 i, 0.0000035695 ± 0.0000935115 i)

x5, x6 ( 0.0019590795 ∓ 0.0033879671 i, 0.0000040733 ± 0.0001067848 i)

ε = 10−12

x1, x2 (−0.000181717560 ∓ 0.000000000182 i, − 0.000000016511 ± 0.000000999864 i)

x3, x4 ( 0.000090858627 ± 0.000157362584 i, 0.000000008136 ± 0.000000985770 i)

x5, x6 ( 0.000090858942 ∓ 0.000157362403 i, 0.000000008372 ± 0.000001014366 i)

Table 1: Zeros of the perturbed system Fε in (16) near (0, 0) for ε = 10-8 and 10-12.

The proofs of the above three fundamental theorems on multiplicities will be deferred to §4, in
which the algebraic foundation of the multiplicity will be established.

Remark on the history of multiplicity: A discussion on the history of the multiplicity formu-
lations for a polynomial system at a zero is given in [6, p.127] from an algebraic geometric point
of view. As Fulton points out there have been a great many differing concepts about multiplic-
ity. Mathematicians who have worked on this include Newton, Leibniz, Euler, Cayley, Schubert,
Salmon, Kronecker and Hilbert. The dual space approach was first formulated by Macaulay [14]
in 1916 for polynomial ideals. Samuel developed this viewpoint with his Characteristic functions
and polynomials now called Hilbert functions and polynomials. More than the multiplicity at a
zero of a polynomial system he defines the multiplicity of an arbitrary local ring [26, Ch. VIII
§10], which, in the case of a 0-dimensional local ring, is just the sum of the Hilbert function values
as in Corollary 1. As we show in §4, this multiplicity is also the C-dimension of the local ring
which is now generally accepted as the standard definition of multiplicity in commutative algebra
for isolated zeros of systems of equations, see Chapter 4 of [4] for a discussion similar to that of
this paper. Symbolic computation of Gröbner duality on polynomial ideals was initiated by Mari-
nari, Mora and Möller [15], as well as Mourrain [17]. Stetter and Thallinger introduced numerical
computation of the dual basis for an polynomial ideal in [21, 24] and in Stetter’s book [22]. Other
computational algorithms on the multiplicity problem have recently been proposed in [1], [9], [12],
[25], and [29], etc. �
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2.2 The Macaulay matrices

Based on the multiplicity formulation, computing the multiplicity structure can be converted to the
problem of identifying matrix ranks and kernels. Consider the dual subspace Dα

x̂(F ) as defined in
(8) for the nonlinear system F = {f1, . . . , ft} in s ≤ t variables x = (x1, . . . , xs). By Lemma 1,
a functional c =

∑

|j|≤α cj ∂j[x̂] is in the dual subspace Dα
x̂(F ) if and only if

c
(
(x− x̂)kfi(x)

)
≡

∑

|j|≤α

cj · ∂j[x̂]
(
(x− x̂)kfi(x)

)
= 0 (17)

for all |k| ≤ α − 1 and i ∈ {1, . . . , s}. By a proper ordering of indices j and (k, i), equation
(17) can be written in matrix form

Sα c = 0 (18)

where c is the vector formed by ordering cj in (17) for j ∈ Ns, j ≥ 0 and |j| ≤ α. The equation
(18) determines the dual subspace Dα

x̂(F ) that is naturally isomorphic to the kernel K(Sα) of
the matrix Sα, which we call the α-th order Macaulay matrix.

To construct the Macaulay matrices, we choose the negative degree lexicographical ordering [8],
denoted by ≺, on the index set Iα ≡

{
j ∈ Ns

∣
∣ j ≥ 0, |j| ≤ α

}
:

i ≺ j if |i| < |j|, or,

(|i| = |j| and ∃ 1 ≤ σ ≤ s : i1 = j1, . . . , iσ-1 = jσ-1, iσ < jσ).

The Macaulay matrix Sα is of size mα × nα where

mα =

(
α − 1 + s

α − 1

)

and nα =

(
α + s

α

)

.

We view the rows to be indexed by (x − x̂)k fi for (k, i) ∈ Iα−1 × {1, · · · , t} with ordering
(k, i) ≺ (k′, i′) if k ≺ k′ in Iα−1 or k = k′ but i < i′, and the columns are indexed by
the differential functionals ∂j for j ∈ Iα. The entry of Sα, at the intersection of the row and
column indexed by (x− x̂)k fi and ∂j respectively, is the value of ∂j[x̂]

(
(x − x̂)k fi

)
. With this

arrangement, Sα is the upper-left mα ×nα submatrix of subsequent Macaulay matrices Sσ, for
σ ≥ α, as illustrated in Example 2. The following corollary is thus straightforward.

Corollary 1 Let F = {f1, . . . , ft} be a nonlinear system of functions in variables x =
(x1, . . . , xs) with a zero x̂. Then for each α > 0, the dual subspace Dα

x̂(I) is isomorphic to
the kernel K(Sα) of the Macaulay matrix Sα. In particular, with S0 ≡ [f1(x̂), . . . , ft(x̂)]> = 0,
the Hilbert function

h(α) = nullity (Sα ) − nullity ( Sα-1 ) (19)

for α = 1, 2, · · · .

Notice that for an obvious ordering ≺ of I1, we can arrange

S1 =






f1(x̂)
...

ft(x̂)

J(x̂)




 ≡






0
...
0

J(x̂)




 (20)

where J(x̂) is the Jacobian of the system {f1, . . . , ft} at x̂.
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Example 2 Consider the system F = {x1 − x2 + x2
1, x1 − x2 + x2

2} at x̂ = (0, 0). Figure 2
shows the expansion of the Macaulay matrices from S1 to S2, then S3, with rows and columns
labeled by xkfi and ∂j respectively. The table beneath the Macaulay matrices in Figure 2
shows the bases for the kernels as row vectors using the same column indices. It is instructive to
compare this pair of arrays to those in [14, § 65] or the reconstruction of Macaulay’s arrays in [16,
Example 30.4.1].

The kernels can be converted to bases of dual subspaces using the indices in the table:

D0
(0,0)(F ) = span{∂00}

D1
(0,0)(F ) = span{∂00, ∂10 + ∂01}

D2
(0,0)(F ) = span{∂00, ∂10 + ∂01, − ∂10 + ∂20 + ∂11 + ∂02}.

It is easy to verify that nullity ( S3 ) = nullity ( S2 ) = 3. Therefore, the Hilbert function h(N) =
{1, 1, 1, 0, · · · }. The multiplicity equals 3. The dual space D(0,0)(F ) = D2

(0,0)(F ) with breadth

β(0,0)(F ) = h(1) = 1 and depth δ(0,0)(F ) = max{α |h(α) > 0} = 2. The complete multiplicity

structure is in order. �

multiplicity
|j| = 0
︷ ︸︸ ︷

|j| = 1
︷ ︸︸ ︷

|j| = 2
︷ ︸︸ ︷

|j| = 3
︷ ︸︸ ︷

matrices ↘ ∂00 ∂10 ∂01 ∂20 ∂11 ∂02 ∂30 ∂21 ∂12 ∂03

︸
︷
︷
︸

|k
|
=

0

f1 0 1 −1 1 0 0 0 0 0 0
S1 f2 0 1 −1 0 0 1 0 0 0 0

︸
︷
︷

︸

|k
|
=

1

x1f1 0 0 0 1 −1 0 1 0 0 0
x1f2 0 0 0 1 −1 0 0 0 1 0
x2f1 0 0 0 0 1 −1 0 1 0 0

S2 x2f2 0 0 0 0 1 −1 0 0 0 1
x2

1f1 0 0 0 0 0 0 1 −1 0 0︸
︷
︷

︸

|k
|
=

2
x2

1f2 0 0 0 0 0 0 1 −1 0 0
x1x2f1 0 0 0 0 0 0 0 1 −1 0
x1x2f2 0 0 0 0 0 0 0 1 −1 0

x2
2f1 0 0 0 0 0 0 0 0 1 −1

S3 x2
2f2 0 0 0 0 0 0 0 0 1 −1

bases for kernels (transposed as row vectors)

K(S0) 1 0 0 0 0 0 0 0 0 0
K(S1) 0 1 1 0 0 0 0 0 0 0

K(S2) 0 −1 0 1 1 1 0 0 0 0
K(S3)

Figure 2: Expansion of the Macaulay matrices for the polynomial system in Example 2

By identifying the multiplicity structure of a nonlinear system with the kernels and nullities of
Macaulay matrices, the multiplicity computation can be reliably carried out by matrix rank-
revealing, as we shall elaborate in §2.3.

2.3 Computing the multiplicity structure

The multiplicity as well as the multiplicity structure can be computed using symbolic, symbolic-
numeric or floating point computation based on Corollary 1. The main algorithm can be outlined
in the following pseudo-code.

9



Algorithm: NonlinearSystemMultiplicity

Input: system F = {f1, · · · , ft} and zero x̂ ∈ Cs

– initialize S0 = Ot×1, K(S0) = span{[1]}, h(0) = 1
– for α = 1, 2, · · · do

∗ expand Sα-1 to Sα, and embed K(Sα-1) into K(Sα)

∗ find K(Sα) by expanding K(Sα-1)

∗ if nullity (Sα ) = nullity (Sα-1 ) then

δ = α − 1, h(α) = 0, break the loop

otherwise, get h(α) by (19)

end if

end do

– convert K(Sδ) to Dx̂(F )

Output: multiplicity m =
∑

α h(α), the Hilbert function h, Dx̂(F ) basis,

depth δx̂(F ), and breadth βx̂(F ) = h(1)

This algorithm turns out to be essentially equivalent to Macaulay’s procedure of 1916 for finding
inverse arrays of dialytic arrays [14, 16], except that Macaulay’s algorithm requires construction
of dialytic arrays with full row rank. This requirement is difficult and costly to implement with
approximate systems or the approximate zeros.

Implementation of the algorithm NonlinearSystemMultiplicity is straightforward for sym-
bolic computation when the system and zero are exact and properly represented. Applying this
multiplicity-finding procedure on approximate zeros and/or inexact systems requires the notions
and algorithms of numerical rank-revealing at the step “find K(Sα)” in Algorithm NonlinearSys-

temMultiplicity.

The numerical rank of a matrix A is defined as the minimum rank of matrices within a threshold
θ [7, §2.5.5]:

rank θ (A ) = min
‖A−B‖2≤θ

rank ( B ) .

The numerical kernel Kθ ( A ) of A is the (exact) kernel K(B) of B that is nearest to A with
rank ( B ) = rank θ ( A ). With this reformulation, numerical rank/kernel computation becomes
well-posed. We refer to [13] for details.

Numerical rank-revealing applies the iteration [13]






uk+1 = uk −
[

2‖A‖∞uk

A

]† [
‖A‖∞(uH

k
uk − 1)

Auk

]

ςk+1 =
‖Auk+1‖2

‖uk+1‖2
, k = 0, 1, · · ·

(21)

where (·)† denotes the Moore-Penrose inverse. From a randomly chosen u0, this iteration virtually
guarantees convergence to a numerical null vector u, and {ςk} will converge to the distance ς
between A and the nearest rank-deficient matrix.

With a numerical null vector u available, applying (21) on Â =
[
‖A‖∞uH

A

]

yields another sequence

{ûk} that converges to a numerical null vector v of A orthogonal to u, and the scalar sequence
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{ς̂k} converges to the distance between A and the nearest matrix with nullity 2. This process
can be recursively continued by stacking ‖A‖∞vH on top of Â and applying (21) on the new
stacked matrix.

We now describe the numerical procedure that carries out the step of computing K(Sα) in
Algorithm NonlinearSystemMultiplicity.

The kernel Kθ ( S0 ) = span{[1]}. Assume an orthonormal basis Y =
[
y1, · · · ,yµ

]
for Kθ ( Sα-1 )

and the QR decomposition
[
TY H

Sα-1

]

= Qα-1

[
Rα-1

O

]

are both available, where Qα-1 is unitary, Rα-1

is square upper-triangular and T is a diagonal scaling matrix.

Embedding yi’s into Cnα by appending zeros at the bottom to form zi for i = 1, · · · , µ, it is
clear that the columns of Z =

[
z1, · · · , zµ

]
form a subset of an orthonormal basis for Kθ (Sα ).

Also, we have matrix partitions

Sα =

[
Sα-1 F
O G

]

,

[
TZH

Sα

]

=





TY H O
Sα-1 F
O G








Qα-1

[
Rα-1 F1

O F2

]

[
O G

]





where
[
F1

F2

]

= QH

α-1

[
O

F

]

. Let Q̂
[

R̂

O

]

=
[
F2

G

]

be a QR decomposition. Then

[
TZH

Sα

]

= Qα





Rα-1 F1

O R̂
O O



 = Qα

[
Rα

O

]

(22)

with a proper accumulation of Qα-1 and Q̂ into Qα. This implies

K(Rα) = K(Sα)
⋂

K(ZH) = K(Sα)
⋂

Kθ (Sα-1 )⊥ .

Therefore Kθ (Rα ) consists of numerical null vectors of Sα that are approximately orthogonal to
those of Sα-1. The procedure below produces the numerical kernel Kθ (Rα ).

• let A = Rα

• for i = 1, 2, · · · do

– apply iteration (21), stop at u and ς
with proper criteria

– if ς > θ, exit, end if

– get zµ+i = u, reset A with
[
‖A‖∞uH

A

]

– update the QR decomposition A = QR

end for

Upon exit, vectors zµ+1, · · · , zµ+ν are remaining basis vectors of Kθ (Sα ) aside from previously

obtained z1, · · · , zµ. Furthermore, the QR decomposition of
[

T̂ ẐH

Sα

]

is a by-product from a

proper accumulation of orthogonal transformations. Here Ẑ =
[
z1, · · · , zµ+ν

]
with a column

permutation and T̂ is again a scaling matrix.
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Algorithm NonlinearSystemMultiplicity is implemented as a function module in the software
package ApaTools [28] for Maple. For an isolated zero of a given system along with a rank
threshold, the software produces the multiplicity, breadth, depth, Hilbert function, and a basis for
the dual space. The software performs symbolic (exact) computation when the rank threshold is
set to zero, and carries out numerical computation otherwise.

Example 3 Let F be the system in (29) and the approximate zero x̂ = (0.9999999999999999,
1.999999999999999, 3.0) is accurately calculated using the depth-deflation method (c.f. §3.1).
Since the estimated error of the approximate zero is 1.94× 10-14, we set the rank threshold to be
slightly larger as 10−12. Algorithm NonlinearSystemMultiplicity accurately produces the
multiplicity 11, breadth 3, depth 4, Hilbert function {1, 3, 3, 3, 1, 0, . . . , } and the (approximate)
dual basis

∂000, ∂100, ∂010, ∂001, ∂200, ∂020, ∂002, .707106781186544 ∂101 + .707106781186543 ∂030

.707106781186544 ∂011 + .707106781186545 ∂300, .707106781186545 ∂110 + .707106781186545 ∂003,

.500000000000008 ∂111 + .500000000000007 ∂400 + .500000000000009 ∂040 + .500000000000008 ∂004.

�

Remarks on computational issues: For an exact system, the accuracy of the zero x̂ can be
arbitrarily high using multiprecision or a deflation method described in §3. As a result, numerical
rank-revealing with sufficient low threshold will ensure accurate multiplicity identification. For
inexact systems, the approximate zeros may carry substantial errors due to the inherent sensitivity.
In this case, setting a proper threshold θ for the numerical rank revealing may become difficult.
The depth-deflation method given in §3 is effective in calculating the zeros to the highest possible
accuracy that may allow accurate identification of the multiplicity. However, there will always
be intractable cases. For those systems with obtainable multiplicity structure at an approximate
solution, the rank threshold needs to be set by users according to the magnitude of errors on the
system and solution. Generally, the threshold should be set higher than the size of error.

The size increase of Macaulay matrices may become a prohibitive obstacle when the number of
variables is large, compounding with high depth δx̂(F ). Most notably, when the breadth βx̂(F ) =
1, the depth is maximal δx̂(F ) = m − 1. In this situation, high order α’s and large sizes of
Macaulay matrices Sα are inevitable. A special case algorithm BreadthOneMultiplicity in
§3.3 is designed to deal with this difficulty. A recently developed closedness subspace strategy
[29] improves the efficiency of multiplicity computation substantially by reducing the size of the
matrices. �

3 Accurate computation of a multiple zero by deflating its depth

It is well known in textbooks that multiple zeros are highly sensitive to perturbations and are there-
fore difficult to compute accurately using floating point arithmetic. Even for a single univariate
equation f(x) = 0, as mentioned before, there is a perceived barrier of “attainable accuracy”:
The number of attainable digits at a multiple zero is bounded by the hardware precision divided
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by the multiplicity. This accuracy barrier is largely erased recently in [27] for univariate polyno-
mial equations. For general nonlinear multivariate systems, we propose a general depth-deflation
method in this section, as well as its special case variation for breadth one systems for accurate
computation of multiple zeros without extending hardware precision even when the given system
is perturbed.

3.1 The depth-deflation method

The hypersensitivity in calculating an approximation x̃∗ to an m-fold zero x∗ can be illustrated
by solving f(x) = 0 for f(x) = xm. When the function is perturbed slightly to fε(x) = xm − ε,
the error becomes

|x̃∗ − x∗| = |f − fε|
1

m .

The asymptotic condition number is

sup
ε>0

|x̃∗ − x∗|
|f − fε|

= ∞

when the multiplicity m > 1. Consequently, multiple zeros are referred to as “singular” or
“infinitely sensitive” to perturbations in the literature. On the other hand, a simple zero is
considered “regular” with a finite condition number as stated in the following lemma.

Lemma 2 Let f = [f1, . . . , ft]
H be a system of s-variate functions that are twice differentiable

in a neighborhood of x̂ ∈ Cs. If the Jacobian J(x̂) of f(x) at x̂ is injective, then

∥
∥x̃ − x̂

∥
∥

2
≤

∥
∥J(x̂)+

∥
∥

2

∥
∥f(x̃) − f(x̂)

∥
∥

2
+ O

(
‖f(x̃) − f(x̂)‖2

2

)
(23)

with ‖J(x̂)+‖2 < ∞.

Proof. The injectiveness of J(x̂) implies t ≥ s and rank ( J(x̂) ) = s. Without loss of
generality, we assume the submatrix of J(x̂) consists of its first s rows is invertible. By the
Inverse Function Theorem, the function [y1, . . . , ys]

H = [f1(x), . . . , fs(x)]H has a continuously
differentiable inverse x = g(y1, . . . , ys) in a neighborhood of [ŷ1, . . . , ŷs]

H = [f1(x̂), . . . , fs(x̂)]H,
permitting ‖x − x̂‖2 ≤ C‖f(x) − f(x̂)‖2 for x in a neighborhood of x̂. Since

f(x) − f(x̂) = J(x̂)(x − x̂) + r(x) or x− x̂ = J(x̂)+
[
f(x) − f(x̂) − r(x)

]

where ‖r(x)‖2 = O
(
‖x − x̂‖2

2

)
= O

(
‖f(x) − f(x̂)‖2

2

)
, we thus have (23). �

In light of Lemma 2, we may define the condition number

κf (x̂) =

{
‖J(x̂)+‖2 if J(x̂) is injective

∞ otherwise
(24)

of the system f at a zero x̂ as a sensitivity measurement, with which we can establish an error
estimate

‖x̃ − x̂‖2 ≈ κf (x̃) · ‖f(x̃)‖2 (25)

of the approximate zero x̃ using the residual ‖f(x̃)‖2.
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Solving a nonlinear system for a multiple zero is an ill-posed problem. The straightforward New-
ton’s iteration attains only a few correct digits of the zero besides losing its superlinear convergence
rate, if it converges at all. Similar to other ill-posed problems, computing a multiple zero for higher
accuracy needs a regularization procedure. An effective regularization approach is the deflation
[11, 18]. For instance, Leykin, Verschelde and Zhao [11] propose a deflation method which success-
fully restored the quadratic convergence of Newton’s iteration. From our perspective, perhaps the
most important feature of deflation strategy should reside in transforming an ill-posed zero-finding
into a well-posed least squares problem. As a result, the multiple zero can be calculated to high
accuracy.

We hereby propose two new versions of the deflation method, one for the general cases and the
other for the cases where the breadth of the system is one at the zero, and both versions are called
depth-deflation methods. We first derive our general depth-deflation method here. The version
for breadth-one systems follows in §3.3.

Let f : Cs −→ Ct represent a nonlinear system f(x) = 0 where f(x) = [f1(x), · · · , ft(x)]>,
x = (x1, . . . , xs) ∈ Cs with t ≥ s, and x̂ be an isolated zero of f(x). Denote J(x) as
the Jacobian of f(x). If x̂ is a simple zero, then J(x̂) is injective with pseudo-inverse
J(x̂)+ = [J(x̂)HJ(x̂)]-1J(x̂)H, and the Gauss-Newton iteration

x(n+1) = x(n) − J(x(n))+ f(x(n)) for n = 0, 1, . . . (26)

locally converges to x̂ at a quadratic rate. More importantly in this regular case, solving f(x) = 0
for the solution x̂ is a well-posed problem and the condition number ‖J(x̂)+‖ < ∞.

When x̂ is a multiple zero of f(x̂), however, the Jacobian J(x̂) is rank-deficient. In this
singular case, the zero x̂ is underdetermined by the system f(x) = 0 because it is also a
solution to J(x)y = 0 for some y 6= 0. In order to eliminate the singularity and thus curb the
hypersensitivity, perhaps further constraints should be imposed.

Let n1 = nullity (J(x̂) ) which is strictly positive at the multiple zero x̂. Denote x1 = x and

x̂1 = x̂. Then, for almost all choices of an n1 × s random matrix R1, the matrix
[

J(x̂1)
R1

]

is of

full (column) rank. It is easy to see that the linear system
[
J(x̂1)
R1

]

x2 =

[
0

e1

]

has a unique solution

x2 = x̂2 6= 0. Here e1 is the first canonical vector [1, 0, . . . , 0]> of a proper dimension. As a
result, a new (2t + k) × (2s) system

f1(x1,x2) ≡





f(x1)[
J(x1)
R1

]

x2 −
[

0
e1

]



 (27)

has an isolated solution (x̂1, x̂2).

If (x̂1, x̂2) is a simple zero of f1(x1,x2), then the singularity of f(x) at x̂ is “deflated” by
solving f1(x1,x2) = 0 for (x̂1, x̂2) as a well-posed problem using the Gauss-Newton iteration (26)
on f1. However, (x̂1, x̂2) may still be a multiple zero of f1(x1,x2) and, in this case, the depth-
deflation process must continue. We can simply repeat the depth-deflation method above on f1.
Generally, assume (x̂1, . . . , x̂2α) is still an isolated multiple zero of fα(x0, . . . ,x2α) after α steps
of depth-deflation with a Jacobian Jα(x̂1, . . . , x̂2α) of nullity nα > 0. The next depth-deflation
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step expands the system to

fα+1(x1, . . . ,x2α+1) ≡








fα(x1, . . . ,x2α)

[
Jα(x1, . . . ,x2α)

Rα+1

]






x2α+1
...

x2α+1




 −

[
0
e1

]








(28)

where Rα+1 is a randomly selected matrix of nα+1 rows and the same number of columns
as Jα(x1, . . . ,x2α). The depth-deflation process continues recursively by expanding f(x1) to
f1(x1,x2), f2(x1, . . . ,x4), . . ., until reaching an expanded system fσ(x1, . . . ,x2σ ) with an isolated
zero (x̂1, . . . , x̂2σ ) that is no longer singular. The following Depth Deflation Theorem ensures the
depth-deflation process will terminate and the number of deflation steps is bounded by the depth
δx̂(f).

Theorem 4 (Depth Deflation Theorem) Let f = [f1, · · · , ft]
> be a system of functions in

the variables x = (x1, · · · , xs) with an isolated multiple zero x̂ of depth δx̂(f). Then there
is an integer σ ≤ δx̂(f) such that the depth-deflation process terminates at the expanded system
fσ(x1, . . . ,x2σ ) with a simple zero (x̂1, . . . , x̂2σ ) where x̂1 = x̂. Furthermore, the depth-deflation
method generates 2σ differential functionals in the dual space Dx̂(f) as by-products.

We shall prove this Depth Deflation Theorem via multiplicity analysis in §3.2.

For polynomial systems, Leykin, Verschelde and Zhao proved that each deflation step of their
method deflates intersection multiplicity by at least one [11, Theorem 3.1]. Theorem 4 improves
the deflation bound substantially since the depth is much smaller than the multiplicity when the
breath is larger than one. The computing cost increases exponentially as the depth-deflation
continues since each depth-deflation step doubles the number of variables. Fortunately, computing
experiments suggest that, for a multiple zero of breadth larger than one, very few depth-deflation
steps are required. At breadth-one zeros, we shall derive a special case depth-deflation method in
§3.3.

The high accuracy achieved by applying the depth-deflation method can be illustrated in the
following examples.

Example 4 Consider the system







(x − 1)3 + .416146836547142 (z − 3) sin y + .909297426825682 (z − 3) cos y = 0
(y − 2)3 + .989992496600445 (x − 1) sin z + .141120008059867 (x − 1) cos z = 0
(z − 3)3 − .540302305868140 (y − 2) sin x + .841470984807897 (y − 2) cos x = 0

(29)

being a perturbation of magnitude 10-15 from an exact system with zero (1, 2, 3) of multiplicity
11, depth 4 and breadth 3. Using 16-digit arithmetic in Maple to simulate the hardware precision,
Newton’s iteration without depth-deflation attains only 4 correct digits, while a single depth-
deflation step eliminates the singularity and obtains 15 correct digits, as shown in the following
table. The error estimates listed in the table are calculated using (25) which provides an adequate
accuracy measurement for the computed zeros.
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without deflation with deflation exact value

x 1.0003 0.999999999999999 1.0
zero y 1.9997 1.999999999999999 2.0

z 3.0003 3.000000000000000 3.0

error estimate 0.00027 0.000000000000019

�

Example 5 Consider the system

ez − .944956946314738 cos y + .327194696796152 sin y = 0

z2 − y3 − y2 − .333333333333333 y − .0370370370370370 = 0

y2 + .666666666666667 y + .148148148148148 − x3 + x2 − .333333333333333 x = 0.

This is a perturbation of magnitude 10-15 from an exact system with zero (1/3,−1/3, 0) of
multiplicity 9, depth 5, breadth 2 and Hilbert function {1, 2, 2, 2, 1, 1, 0, . . .}. Again, using 16-
digits arithmetic in Maple, Newton’s iteration diverges from the initial iterate (0.31,−0.31, 0.01).
In contrast, our depth-deflation method takes three deflation steps to eliminate the singularity and
obtains 15 correct digits of the multiple zero:

without deflation with deflation exact value

x diverges 0.3333333333333336 1/3
zero y diverges -0.3333333333333334 −1/3

z diverges 0.0000000000000002 0

error estimate —– 0.0000000000001950

�

3.2 Multiplicity analysis of the depth-deflation method

We shall use some additional differential notations and operations. The original variables x =
[x1, · · · , xs]

> will be denoted by x1 in accordance with the notation for the auxiliary (vector)
variables x2, x3 etc. For any fixed or variable vector y = [y1, · · · , ys]

>, the directional
differentiation operator along y is defined as

∇y ≡ y1
∂

∂x1
+ · · · + ys

∂
∂xs

. (30)

When y is fixed in Cs, ∇y induces a functional ∇y[x̂] : p −→ (∇yp)(x̂). For any variable

u = [u1, · · · , us]
>, the gradient operator ∆u ≡

[
∂

∂u1
, · · · , ∂

∂us

]>
, whose “dot product” with a

vector v = [v1, · · · , vs]
> is defined as

v · ∆u ≡ v1
∂

∂u1
+ · · · + vs

∂
∂us

. (31)
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In particular, ∇y ≡ y · ∆x ≡ y · ∆x1
for any y of dimension s. Let y and z be auxiliary

variables. Then, for any function f(x),

(y · ∆x1
)(∇zf(x1)) = ∇y∇zf(x1), z · ∆yf(x1) ≡ 0,

(z · ∆y)(∇yf(x1)) = (z · ∆y)(y · ∆x1
)f(x1) = ∇zf(x1).

(32)

Let f0(x1) ≡ f(x) = [f1(x), · · · , ft(x)]> be a nonlinear system in variable vector x and J0(x)
be its Jacobian matrix. Then

J0(x) z =






∆xf1(x)>

...
∆xft(x)>




 z =






z · ∆xf1(x)
...

z · ∆xft(x)




 = ∇zf(x1).

The first depth-deflation step expands the system to f1(x1,x2) = 0 with

f1(x1,x2) ≡





f0(x1)[
J0(x1)

R1

]

x2 −
[

0
e1

]



 ≡





f0(x1)
∇x2

f0(x1)
R1x2 − e1



. (33)

The values of x2 = x̂2 6= 0 induce a functional ∇x̂2
[x̂1] ∈ Dx̂(f). If the zero (x̂1, x̂2) of f1

remains multiple, then the Jacobian J1(x̂1, x̂2) of f1(x1,x2) at (x̂1, x̂2) has a nullity k1 > 0
and a nontrivial kernel. The depth-deflation process can be applied to f1 the same way as (33)
applied to f0. Namely, we seek a zero (x̂1, x̂2, x̂3, x̂4) to the system

f2(x1,x2,x3,x4) =





f1(x1,x2)[
J1(x1,x2)

R2

] [
x3

x4

]

−
[
0
e1

]





where R2 is any matrix of size k1 × 2s that makes

[
J1(x1,x2)

R2

]

full rank. By (30) – (32),

equation J1

(
x1,x2

)
[
x3

x4

]

= 0 implies





(x3 · ∆x1
)f0(x1) + (x4 · ∆x2

)f0(x1)
(x3 · ∆x1

)∇x2
f0(x1) + (x4 · ∆x2

)∇x2
f0(x1)

(x3 · ∆x1
)(R1x2 − e1) + (x4 · ∆x2

)(R1x2 − e1)



 =





∇x3
f0(x1)

(∇x3
∇x2

+ ∇x4
)f0(x1)

R1x4





= 0.

(34)

Thus, the second depth-deflation seeks a solution (x̂1, x̂2, x̂3, x̂4) to equations

f0(x1) = 0, ∇x2
f0(x1) = 0, ∇x3

f0(x1) = 0, (∇x3
∇x2

+ ∇x4
)f0(x1) = 0. (35)

It is important to note that x̂3 6= 0. Otherwise, from (34)
[
∇x̂4

f0(x̂1)
R1x̂4

]

≡
[
J0(x̂1)

R1

]

x̂4 = 0,

which would lead to x̂4 = 0, making it impossible for R2

[
x̂3

x̂4

]

= e1.

After α depth-deflation steps, in general, we have an isolated zero (x̂1, · · · , x̂2α) to the expanded
system fα(x1, · · · ,x2α), with Jacobian Jα(x1, · · · ,x2α) of rank rα. If rα < 2αs, then the next
depth-deflation step seeks a zero to fα+1(x1, · · · ,x2α+1) = 0 defined in (28).
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Lemma 3 Let f0(x1) ≡ f(x) be a system of t functions of s variables with a multiple zero
x̂1 = x̂. Assume the depth-deflation process described above reaches the extended system fα+1 in
(28) with isolated zero (x̂1, · · · , x̂2α+1). Then

x̂2j+1 6= 0, j = 0, 1, · · · , α.

Proof. The assertion is true for j = 0 and j = 1 as shown above. Let

y =






x1
...
x2α−1




 , z =






x2α−1+1
...

x2α−1+2α−1




 , u =






x2α+1
...

x2α+2α−1




 , v =






x2α+2α−1+1
...

x2α+2α−1+2α−1




 .

Then

Jα(y, z)

[
u
v

]

=





u · ∆yfα-1(y)
[(u · ∆y)(z · ∆y) + (v · ∆y)] fα-1(y)

Rα-1v



 = 0 (36)

together with u = 0 would imply

Jα(ŷ, ẑ)

[
0
v

]

=





0
(v · ∆ŷ)fα-1(ŷ)

Rα-1v



 =





0
Jα-1(ŷ)
Rα-1



v = 0

and thereby v = 0 since
[
Jα-1(ŷ)
Rα-1

]

is of full column rank. Therefore

û =
(

x̂>
2α+1, · · · , x̂>

2α+2α−1

)>
6= 0. (37)

Moreover, from (36)
0 = û · ∆yfα-1(ŷ) ≡ Jα-1(ŷ)û. (38)

It now suffices to show that for all η,

Jη(x̂1, · · · , x̂2η )






w1
...

w2η




 = 0 and






w1
...

w2η




 6= 0 (39)

would imply w1 6= 0. Obviously, this is true for η = 1. Assume it is true for up to η− 1. Then,
using the same argument for (37) and (38), we have (39) implying






w1
...
w2η−1




 6= 0 and Jη−1






w1
...
w2η−1




 = 0.

Thus w1 6= 0 from the induction assumption. �

It is clear that the third depth-deflation, if necessary, adds variables x5, x6, x7, x8 and equations

∇x5
f(x1) = 0, (∇x5

∇x2
+ ∇x6

)f(x1) = 0, (∇x5
∇x3

+ ∇x7
)f(x1) = 0,

(∇x5
∇x3

∇x2
+ ∇x5

∇x4
+ ∇x3

∇x6
+ ∇x7

∇x2
+ ∇x8

)f(x1) = 0.
(40)
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Any solution (x̂1, · · · , x̂8) ∈ C8s to (35) and (40) induces eight differential functionals

1, ∇x̂2
, ∇x̂3

, ∇x̂5
,

∇x̂3
∇x̂2

+ ∇x̂4
, ∇x̂5

∇x̂2
+ ∇x̂6

, ∇x̂5
∇x̂3

+ ∇x̂7
,

∇x̂5
∇x̂3

∇x̂2
+ ∇x̂5

∇x̂4
+ ∇x̂3

∇x̂6
+ ∇x̂7

∇x̂2
+ ∇x̂8

that vanish on f at x̂1. In general, the α-th depth-deflation step produces a collection of 2α

differential functionals of order α or less that vanish on the system f at x̂1. Also notice that
the highest order differential terms are

∇x̂2
≡ ∇x̂

20+1
, ∇x̂3

∇x̂2
≡ ∇x̂

21+1
∇x̂

20+1
, ∇x̂5

∇x̂3
∇x̂2

≡ ∇x̂
22+1

∇x̂
21+1

∇x̂
20+1

for depth-deflation steps 1, 2 and 3, respectively.

Actually these functionals induced by the depth-deflation method all belong to the dual space
Dx̂(f). To show this, we define differential operators Φα, α = 1, 2, · · · as follows.

Φν+1 =
2ν
∑

ζ=1

x
2ν+ζ

· ∆xζ
, ν = 0, 1, · · · . (41)

Specifically,
Φ1 = x2 · ∆x1

Φ2 = x3 · ∆x1
+ x4 · ∆x2

Φ3 = x5 · ∆x1
+ x6 · ∆x2

+ x7 · ∆x3
+ x8 · ∆x4

.

For convenience, let Φ0 represent the identity operator. Thus

Φ0f(x1) = f(x1),
Φ1f(x1) = ∇x2

f(x1),
Φ2f(x1) = ∇x3

f(x1),
Φ2 ◦ Φ1f(x1) = (x3 · ∆x1

)∇x2
f(x1) + (x4 · ∆x2

)∇x2
f(x1) = (∇x3

∇x2
+ ∇x4

)f(x1)

etc. For any expanded system fα(x1, · · · ,x2α) generated in the depth-deflation process, its
Jacobian Jα(x1, · · · ,x2α) satisfies

Jα(x1, · · · ,x2α)






x2α+1
...

x2α+2α




 = Φα+1fα(x1, · · · ,x2α).

It is easy to see that (35) and (40) can be written as

Φ0f(x1) = 0,
Φ1f(x1) = 0,
Φ2f(x1) = 0, Φ2 ◦ Φ1f(x1) = 0,
Φ3f(x1) = 0, Φ3 ◦ Φ1f(x1) = 0, Φ3 ◦ Φ2f(x1) = 0, Φ3 ◦ Φ2 ◦ Φ1f(x1) = 0.

As a consequence, Theorem 4 given in §3 provides an upper bound, the depth, on the number
of depth-deflation steps required to regularize the singularity at the multiple zero. This bound
substantially improves the result in [11, Theorem 3.1]. In fact, our version of the deflation method
deflates depth rather than the multiplicity as suggested in [11].
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We now give a proof of Theorem 4.

Proof of Theorem 4. We first claim that the α-th depth-deflation step that solves f(x1) =
0 induces all differential functionals in the form of Φµ1

◦ · · · ◦ Φµk
f(x1) = 0 at (x1, · · · ,x2α) =

(x̂1, · · · , x̂2α) with α ≥ µ1 > µ2 > · · · > µk > 0 and 1 ≤ k ≤ α. This is clearly true for α = 1
since f1(x1,x2) = 0 induces

Φ0f(x1) = Φ1f(x1) = 0.

Assume the claim is true for α−1. For α-th depth-deflation, consider a functional in the following
form

Φµ1
◦ · · · ◦ Φµk

f(x1) = 0, α ≥ µ1 > µ2 > · · · > µk ≥ 0. (42)

If µ1 < α, then such a functional must already be induced from solving fα−1 = 0. On the other
hand, if µ1 = α, then

Φµ2
◦ · · · ◦ Φµk

f(x1) = 0, α − 1 ≥ µ2 > · · · > µk ≥ 0

is in fα−1 = 0. Therefore ΦαFα−1 induces the functional in (42).

Next, the functional in (42) satisfies closedness condition (11). To show this, let p be any
polynomial in variables x. By applying the product rule Φα(f g) = (Φα f) g + (Φα g) f in an
induction,

Φµ1
◦ · · · ◦ Φµk

(pfi) =
∑

{η1,··· ,ηj}⊂{µ1,··· ,µk}

pη1···ηj
Φη1

◦ · · · ◦ Φηj
fi

where η1 > · · · > ηj and pη1···ηj
is a polynomial generated by applying Φj’s on p. Therefore

Φµ1
◦ · · · ◦Φµk

(pfi) = 0 at (x̂1, · · · , x̂2α) since Φη1
◦ · · · ◦Φηj

fi = 0, showing that functionals in
the form of (42) are all in the dual space Dx̂(f).

Finally, the highest order part of the differential functional Φα ◦ Φα−1 ◦ · · · ◦ Φ1 is

α−1∏

j=0

(x̂2j+1 · ∆x) ≡
α−1∏

j=0

∇x̂
2j+1

which is of order α since x̂2j+1 6= 0 by Lemma 3. However, differential orders of all functionals
in Dx̂(f) are bounded by δx̂(f), so is α. �

In general, Theorem 4 does not guarantee those 2k functionals are linearly independent.

From computing experiments, the number k of depth-deflation steps also correlates to the breadth
βx̂(f). Especially when βx̂(f) = 1, it appears that k always reaches its maximum. This motivates
the special case breadth-one algorithm which will be presented in §3.3. On the other hand, when
breadth βx̂(f) > 1, very frequently the depth-deflation process pleasantly terminates only after
one depth-deflation step regardless of the depth or multiplicity. A possible explanation for such a
phenomenon is as follows. At each depth-deflation step, say the first, the isolated zero ẑ to the
system (33) is multiple only if there is a differential functional in the form of ∇x3

∇x2
+ ∇x4

in
D2

x̂(f) while R1x2 = e1 and R1x4 = 0 for a randomly chosen R1. In most of the polynomial
systems we have tested, functionals in this special form rarely exist in D2

x̂(f) when βx̂(f) > 1. If
no such functionals exist in D2

x̂(f), the zero ẑ must be a simple zero of F̃ in (33) according to
Theorem 4, therefore the depth-deflation ends at k = 1 step.
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3.3 Special case: dual space of breadth one

Consider a nonlinear system f = [f1, · · · , ft]
> having breadth-one at an isolated zero x̂, namely

βx̂(f) = 1. The Hilbert function is {1, 1, · · · , 1, 0, · · · }, making the depth δx̂(f) one less than
the multiplicity dim

(
Dx̂(f)

)
. This special case includes the most fundamental univariate equation

f(x) = 0 at a multiple zero.

As mentioned above, the general depth-deflation method derived in §3.1 always exhausts the max-
imal number of steps in this case, and the final system is expanded undesirably from t× s to over
(2m−1t) × (2m−1s) at an m-fold zero. To overcome this exponential growth of the system size,
we shall modify the depth-deflation process for breadth-one system in this section in which the
regularized system is of the size close to (mt) × (ms), and upon solving the system, a complete
basis for the dual space Dx̂(f) is obtained as a by-product.

Denote x = x1 and the zero x̂ = x̂1 as in §3.1. It follows from (20), the breadth βx̂(f) =

h(1) = nullity (J0(x̂1) ) = 1 implies system (33), simplifying to
[
J0(x̂1)

bH

]

x2 =
[
0

1

]

in the variable

vector x2, has a unique solution x̂2 ∈ Cs for randomly chosen vector b ∈ Cs. Similar to the
general depth-deflation method in § 3.1, the first step of depth-deflation is to set up an expanded
system:

g1 (x1,x2) =

[
h0(x1)
h1(x1,x2)

]

(43)

where h0(x1) ≡ f(x) and h1(x1,x2) =

[
J0(x1)x2

bHx2 − 1

]

≡
[
∇x2

f(x1)
bHx2 − 1

]

.

The system g1(x1,x2) has an isolated zero (x̂1, x̂2). If the Jacobian J1(x1,x2) of g1(x1,x2) is
of full rank at (x̂1, x̂2), then the system is regularized and the depth-deflation process terminates.
Otherwise, there is a nonzero vector (v1,v2) ∈ C2s such that

J1(x̂1, x̂2)

[
v1

v2

]

≡





∇v1
f(x̂1)

(∇v1
∇x̂2

+ ∇v2
)f(x̂1)

bHv2



 = 0. (44)

Since the Jacobian J0(x̂) of f at x̂1 is of nullity one, there is a constant γ ∈ C such that
v1 = γx̂2. Equation (44) together with βx̂0

(f) = 1 and (v1,v2) 6= (0,0) imply γ 6= 0.
Consequently we may choose γ = 1, namely v1 = x̂2. Setting x̂3 = v2, the system

g2(x1,x2,x3) ≡





h0(x1)
h1(x1,x2)
h2(x1,x2,x3)



 =









f(x1)
∇x2

f(x1)
bHx2 − 1

(∇x2
∇x2

+ ∇x3
)f(x1)
bHx3









(45)

where h2(x1,x2,x3) =

[
(∇x2

∇x2
+ ∇x3

)f(x1)
bHx3

]

has an isolated zero (x̂1, x̂2, x̂3). In general, if an isolated zero (x̂1, · · · , x̂γ+1) to the system

gγ(x1, · · · ,xγ+1) =








h0(x1)
h1(x1,x2)

...
hγ(x1, · · · ,xγ+1)







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remains singular, or the Jacobian Jγ(x̂1, · · · , x̂γ+1) is rank-deficient, then there is a non-zero
solution to the homogeneous system

Jγ(x̂1, · · · , x̂γ+1)






u1
...

uγ+1




 ≡








Jγ−1(x̂1, · · · , x̂γ)






u1
...
uγ






∗








= 0.

Therefore, by setting u1 = x̂2, u2 = x̂3, · · · , uγ = x̂γ+1, we take its unique solution uγ+1 as
x̂γ+2.

The pattern of this depth-deflation process can be illustrated by defining

Ψ =

∞∑

η=1

xη+1 · ∆xη . (46)

When applying Ψ to any function f in (vector) variables, say x1, · · · ,xσ , the resulting Ψf is
a finite sum since ∆xµf = 0 for µ ≥ σ + 1. Thus,

h1(x1,x2) =

[
Ψh0(x1)
bHx2 − 1

]

, h2(x1,x2,x3) =

[
Ψh1(x1,x2)
bHx3 − 1

]

and

hν(x1, · · · ,xν) =







ν−1
︷ ︸︸ ︷

Ψ ◦ Ψ ◦ · · · ◦ Ψh1(x1,x2),

bHxν+1







, for ν ≥ 2. (47)

For instance, with h1 and h2 in (43) and (45) respectively, we have

h3(x1,x2,x3,x4) =

[
(∇x2

∇x2
∇x2

+ 3∇x2
∇x3

+ ∇x4
)h0(x1)

bHx4

]

.

If, say, h3 = 0 at (x̂1, x̂2, x̂3, x̂4), a functional f −→ (∇x̂2
∇x̂2

∇x̂2
+ 3∇x̂2

∇x̂3
+ ∇x̂4

) f(x1)
is obtained and it vanishes on the system f . The original system f(x) = 0 provides a trivial
functional ∂0···0 : f → f(x̂1). By the following lemma those functionals are all in the dual space.

Lemma 4 Let f = [f1, · · · , ft]
> be a nonlinear system with an isolated zero x̂ ∈ Cs. Write

g0 = f , x̂1 = x̂ and x1 = x. For any γ ∈ { 1, 2, · · · }, let (x̂1, x̂2, · · · , x̂γ+1) be a zero of

gγ(x1,x2, · · · ,xγ+1) =






h0(x1)
...

. . .

hγ(x1, · · · ,xγ+1)




. (48)

Then the functionals derived from gγ(x̂1, · · · , x̂γ+1) = 0 constitutes a linearly independent subset
of the dual space Dx̂0

(f).

Proof. By a rearrangement if necessary, finding a zero to gγ(x1,x2, · · · ,xγ+1) is equivalent to
solving

f(x1) = 0, bHx2 = 1,
Ψf(x1) = 0, bHx3 = 0,

...
...

Ψ ◦ · · · ◦ Ψf(x1) = 0, bHxγ+1 = 0.

(49)
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for (x1, · · · ,xγ+1) ∈ C(γ+1)s. Let (x̂1, · · · , x̂γ+1) be an isolated zero. Then each Ψ◦· · ·◦Ψ induces
a differential functional

ρα : f −→
α

︷ ︸︸ ︷

Ψ ◦ · · · ◦ Ψ f

∣
∣
∣
∣
(x1,··· ,xα+1)=(x̂1,··· ,x̂α+1)

, for α = 0, 1, · · · , γ. (50)

Those functionals vanish on f1, · · · , ft because of (49). Since Ψ satisfies product rule Ψ(fg) =
(Ψf)g + f(Ψg) for any functions f and g in finitely many variables among x1,x2, · · · , for any
polynomial p ∈ C[x1], we have, for α = 0, 1, · · · , γ and i = 1, · · · , t,

ρα(pfi) =

α∑

j=0

(
α
j

)

(

j
︷ ︸︸ ︷

Ψ ◦ · · · ◦ Ψ p)(

α−j
︷ ︸︸ ︷

Ψ ◦ · · · ◦ Ψ fi)

∣
∣
∣
∣
(x1,··· ,xα+1)=(x̂1,··· ,x̂α+1)

= 0.

Namely, ρα’s satisfy the closedness condition (11), so they belong to Dx̂1
(f).

The leading (i.e., the highest order differential) term of ρα is

α
︷ ︸︸ ︷

∇x̂2
· · · ∇x̂2

which is of order α
since x̂2 6= 0. Therefore, they are linearly independent. �

Theorem 5 (Breadth-one Deflation Theorem) Let x̂ be an isolated multiple zero of the
nonlinear system f = [f1, · · · , ft]

> with breadth βx̂(f) = 1. Then there is an integer γ ≤ δx̂(f)
such that, for almost all b ∈ Cs, the system gγ in (48) has a simple zero (x̂1, x̂2, · · · , x̂γ+1)
which induces γ+1 linearly independent functionals in Dx̂(f).

Proof. A straightforward consequence of Lemma 4. �

While the general depth-deflation method usually terminates with one or two steps of system
expansion for systems of breadth higher than one, the breadth one depth-deflation always terminates
at step γ = δx̂(f) exactly. Summarizing the above elaboration, we give the pseudo-code of an
efficient algorithm for computing the multiplicity structure of the breadth one case as follows:

Algorithm BreadthOneMultiplicity

Input: Nonlinear system f = [f1, . . . , ft]
H, zero x̂1 ∈ Cs

– set random vectors b ∈ Cs and obtain x̂2 by solving
[

J(x̂1)
bH

]

x2 =

[
0

1

]

– initialize p2(x1,x2) = J(x1)x2

– for k = 2, 3, . . . do

∗ set dk(x1, . . . ,xk) =
∑k−1

j=1 x̂j+1 · ∆xj
pk(x1, . . . ,xk)

∗ solve for xk+1 = x̂k+1 in the system

[
J(x̂1)
bH

]

xk+1 =

[
dk(x̂1, . . . , x̂k)

0

]

(51)

∗ if the equation (51) has no solution, set γ = k − 1 and
break the loop; otherwise, set

pk+1(x1, . . . ,xk+1) = Ψpk(x1, . . . ,xk) ≡ dk(x1, . . . ,xk) + J(x1)xk+1
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end do

Output: multiplicity γ + 1 and functionals ρ0, ρ1, . . . , ργ as in (50)

Example 6 Consider the sequence of nonlinear systems

fk(x, y, z) = [x2 sinh y, y − z2, z + sin xk ] (52)

of breadth one at the isolated zero (0, 0, 0). The multiplicities dim
(
D(0,0,0)(fk)

)
= 2(k + 1) and

depth δ(0,0,0)(fk) = 2k + 1. The computing time for the general algorithm NonlinearSystem-

Multiplicity grows substantially when the depth increases. As shown in Table 2, Algorithm
BreadthOneMultiplicity is much faster in this special case. �

k: 1 2 3 4 5

depth δ(0,0,0)(fk): 3 5 7 9 11

NonlinearSystemMultiplicity 1.86 19.91 152.17 993.97 4829.55
BreadthOneMultiplicity 0.25 0.64 1.09 2.06 3.93

Table 2: Execution time (seconds) of two algorithms for computing the multiplicities of the breadth
one systems fk, k = 1, 2, . . . , 5 in (52).

In our extensive computing experiments, Algorithm BreadthOneMultiplicity always produces
a complete dual basis ρ0, . . . , ργ without premature termination. We believe the following
conjecture is true.

Conjecture 1 Under the assumptions of Theorem 5, Algorithm BreadthOneMultiplicity

terminates at γ = δx̂(f) and generates a complete basis for the dual space

Dx̂(f) = span{ρ0, ρ1, . . . , ργ}.

4 Algebraic foundation of the multiplicity

In previous sections, we elaborated the duality formulation of the multiplicity and its identification
as well as the computation of multiple zeros without using terminology and theory of algebraic
geometry. We postponed the proofs of the Local Finiteness Theorem (Theorem 1), the Multiplicity
Consistency Theorem (Theorem 2) and the Perturbation Invariance Theorem (Theorem 3) until
after a more solid theoretical foundation for the multiplicity is established in this section. For
general readership, we shall attempt to make this section self contained with a prerequisite of a
standard first year graduate course in abstract algebra. Perhaps an exception is the proofs in
§4.1 which require a familiarity with the basic theory of functions of several complex variables as
outlined in [23, Chapters 3,4].

4.1 Analytic Preliminaries

Let C[x1, . . . , xs] be the ring of polynomials in the variables x1, . . . , xs and let C{x1, . . . , xs}
denote the ring of convergent power series centered at 0, that is, each element f ∈ C{x1, . . . , xs}
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converges in some open set Vf about 0, see [4, 23]. For a set F = {f1, . . . , ft} of analytic
functions and a ring R of functions on open set U and assume 0 ∈ U , let FR denote the ideal

FR =
{
f1g1 + · · · + ftgt

∣
∣ g1, . . . , gt ∈ R

}
. (53)

For an analytic function f , define ord (f) = m to be the smallest integer such that a term of the
multivariate Taylor series of f at 0 of total degree m has a nonzero coefficient. Define

jet(f, k) =
∑

|α|≤k

fα (54)

where for α = xj1
1 . . . xjs

s , |α| = j1 + · · · + js is the total degree and fα is the term cαα in a
Taylor series expansion of f about 0. Note that for a fixed k, the map jet(·, k) is linear on R
and ord (f − jet(f,m)) > m. An open polydisc in Cs at a point x̂ = (x̂1, . . . , x̂s) is defined as

∆(x̂, r) = {a = (a1, . . . , as) ∈ Cs
∣
∣ |ai − x̂i| < ri, i = 1, . . . , s}

for an array r = [r1, . . . , rs] ∈ Rs
+

of positive real numbers. From an analytic point of view an
isolated zero is defined by

Definition 2 A point x̂ is an isolated zero of a system F = {f1, . . . , ft} if there is an open
polydisc ∆(x̂, r) in which x̂ is the only zero of F .

Lemma 5 Let R be the ring of analytic functions on open set U ⊆ Cs and assume x̂ = 0 ∈ U .
Let F = {f1, . . . , ft} ⊂ R be a system of analytic functions with common zero x̂. Then the
following are equivalent:

(i) The point x̂ = 0 ∈ U is an isolated zero of F .

(ii) For each j ∈ {1, . . . , s} there is a positive integer ej such that x
ej

j ∈ FC{x1, . . . , xs}.
(iii) For each j ∈ {1, . . . , s} there is a positive integer ej and an analytic function pj ∈ R

with ord (pj) > ej and x
ej

j + pj ∈ FC[x1, . . . , xs].

Proof. We first prove (i) implies (ii) following Rükert’s Nullstellensatz [23, Theorem 4.5.5]. Let
F ∗ = FC{x1, . . . , xs} be the ideal generated by F in C{x1, . . . , xs}. Then loc F ∗, the locus of
F ∗, is the germ of the one element variety {0}, using the notation in [23]. By the Nullstellensatz,
the radical of F ∗ =

√
F ∗ is the maximal ideal of C{x1, . . . , xs} at 0. Notice that

√
F ∗ = { f ∈ C{x1, . . . , xs}

∣
∣ fk ∈ F ∗ for some integer k > 0 }.

However, monomials x1, . . . , xs all belong to this maximal ideal. As a result, there exist positive
integers e1, . . . , es such that xe1

1 , . . . , xes
s ∈ F ∗, proving assertion (ii).

To prove (ii) implies (iii), let j ∈ {1, . . . , s}. The assertion (ii) yields the existence of g1, . . . , gt ∈C{x1, . . . , xs} with
x

ej

j = g1f1 + · · · + gtft. (55)

Let g̃i = gi − jet(gi, ej). Then ord (g̃i) > ej . Therefore, for each j, from (55)

x
ej

j = (jet(g1, ej) + g̃1)f1 + · · · + (jet(gt, ej) + g̃t)ft

=
(

jet(g1, ej)f1 + · · · + jet(gt, ej)ft

)
+

(
g̃1f1 + · · · + g̃tft

)
(56)
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and
x

ej

j + pj = jet(g1, ej)f1 + · · · + jet(gt, ej)ft ∈ FC[x1, . . . , xs] (57)

where pj = −
(
g̃1f1 + · · · + g̃tft

)
. Consequently ord (pj) > ej and the right hand side of (57) is

in FR since jet(gi, ej)’s are polynomials and thus belong to R for all i ∈ {1, . . . , t}. Moreover,
since x

ej

j is also in R, it follows that actually pj is in R.

For (iii) implying (i), assume the assertion (iii) holds. Then by Schwarz’s Lemma [23, Exercise
4, p. 35] for each j = 1, . . . , s there exists a constant Kj such that |pj(x)| ≤ Kj‖x‖ej+1 in a
polydisc ∆(0, [tj , . . . , tj]) of 0. Let rj = min{tj , 1

2Kj
} for j = 1, . . . , s. With r = [r1, . . . , rs],

let
Vj =

{
x = (x1, . . . , xs) ∈ ∆(0, r) \ {0}

∣
∣ max

1≤i≤s
|xi| = |xj |

}

for j = 1, . . . , s. Now in each Vj, we have

|pj(x)| ≤ Kj‖x‖ej+1 ≤ Kj |xj |ej+1 < Kjrj|xj |ej =
1

2
|xej

j | < |xej

j |

and hence x
ej

j +pj(x) 6= 0 in Vj. But x
ej

j +pj = g1f1 + · · ·+gtft for some g1, . . . , gt ∈ R, so for
each x ∈ ∆(0, r) \ {0} some fi(x) must not vanish. With the infinity norm, each x ∈ ∆(0, r)
satisfies ‖x‖ = |xj | < rj for some j, so ∆(0, r) \ {0} = ∪s

j=1Vj which proves the assertion (i).

�

Remark on Lemma 5: The form of (iii) implies that if f1, . . . , ft ⊂ C[x1, . . . , xs] are polynomials
then those p1, . . . , pt are also polynomials in C[x1, . . . , xs], so Lemma 5 specializes to a lemma
about polynomials. Generally in algebra the practice is to give results over as general a field as
possible so the ground field could be the rationals or a field of characteristic p and hence the
analytic definition above does not apply. Assertion (ii), which is equivalent to the local ring at
x̂ = 0 being finite dimensional over the ground field, is often used as the working definition of
isolated zero in algebraic geometry so in the literature (i) may taken to be identical to (ii). For
polynomials the difficulty in this lemma is using the analytic definition of isolated zero above. If
it is known that the solution to the system F is finite, then by Hilbert’s Nullstellensatz the ringC[x1, . . . , xs]/FC[x1, . . . , xx] is finite dimensional over C and (ii) follows. But in the case where
the system F also has positive dimensional components and x̂ is a multiple zero we know of no
easier proof in the polynomial case than the one given here. �

In the rest of this section M
α
s , for α = 0, 1, 2, . . . , will denote the ideal in C{x1, . . . , xs} given

by

M
α
s = {f ∈ C{x1, . . . , xs}

∣
∣
∣ord (f) ≥ α}.

Of course, M
0
s = C{x1, . . . , xs}.

Lemma 6 The ideal M
α
s is generated by the monomials xj with |j| = α, that is, if f ∈ M

α
s

then f =
∑

|j|=α xjgj where xj and gj are elements of C{x1, . . . , xs}.

Proof. The proof goes by induction on s. If s = 1, then f ∈ M
α
1 is of the form

f =
∑

k≥α akx
k
1 = xα

1

∑

j≥0 aj+αxj
1 so M

α
1 is generated by xα

1 .
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For s > 1, by the Weierstrass Division Theorem [23, Th. 3.3.5] h = xα
s is a Weierstrass polynomial

for xs. So if f ∈ M
α
s then f = xα

s g + q where g ∈ C{x1, . . . , xs} and q is a polynomial in
xs of degree α − 1 or less in C{x1, . . . , xs−1}[xs]. This means q = xα−1

s q1 + · · · + xsqα−1 + qα

where qk ∈ C{x1, . . . , xs−1}. Since f and xα
s g are in M

α
s , it follows that ord (q) ≥ α so

qk ∈ M
k
s−1. By induction, each term of q is a sum of monomials in C{x1, . . . , xs−1} of degree

α multiplied by an element of C{x1, . . . , xs−1}. Hence f is of the desired form. �

Remark on Lemma 6. This lemma is also needed in the polynomial case if one is to useC[[x1, . . . , xs]] rather than C[x1, . . . , xs]〈x1,...,xs〉 as the local ring (see [4]). In [26], an algebraic
proof of the Weierstrass preparation theorem is given for C[[x1, . . . , xs]] from which the analog of
this lemma can be deduced. �

As a consequence of Lemma 5 and Lemma 6, if x̂ = 0 is an isolated zero of an analytic system
F = {f1, . . . , ft} then C{x1, . . . , xs}/FC{x1, . . . , xs} is finite dimensional as a C-algebra (c.f.
Theorem 6 part (ii) below). We will also need to refer to a lemma from [19] which uses this fact to
define multiplicity as this dimension. For convenience, we paraphrase a special case of that lemma
here using our notation.

Lemma 7 (Sommese-Verschelde Local Extension Lemma) [19, Lemma 6] Let

F = [f1, . . . , fs]
> : Cs ×Ct −→ Cs

be a system of s holomorphic functions. Let x̂ ∈ Cs be an isolated solution of F (x, ŷ) = 0

for a fixed ŷ ∈ Ct. Let m = dimC(C{x1, . . . , xs}/FC{x1, . . . , xs}
)

. Then there are open

neighborhoods U and V of x̂ and ŷ, respectively, such that for any fixed y ∈ V there exist
exactly m isolated solutions (counting multiplicities) of the equation F (x,y) = 0 in x ∈ U .

4.2 Equivalence of Hilbert Functions

In §2.1, we defined a Hilbert function






h(0) = dim
(

D0
x̂(F )

)

≡ 1

h(α) = dim
(

Dα
x̂(F )

)

− dim
(

Dα−1
x̂

(F )
)

for α ∈ { 1, 2, . . . },
(58)

and showed in Corollary 1 of §2.2 that

h(α) = nullity ( Sα ) − nullity ( Sα−1 ) (59)

for α = 1, 2, · · · . We now define a new Hilbert function H(α) and show that it agrees with h(α).

We will now hold the number of variables s fixed, so we drop the subscript s and just write M
α

instead of M
α
s . By Lemma 6 above, each of the ideals M

α is finitely generated. In fact, each
M

α is generated by the
(
s+α−1

s−1

)
monomials xj of total degree α. Note that the projection

ρα : C{x1, . . . , xs} → C{x1, . . . , xs}/Mα satisfies ρα+1(f) = ρα+1(jet(f, α)) from which it easily
follows that M

α/Mα+1 has a basis consisting of the monomials xj of total degree α and so

dim
(

M
α/Mα+1

)

=

(
α + s − 1

s − 1

)

(60)
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as a C-vector space. Now, for a given analytic system F = {f1, . . . , ft}, we make a filtration m
α

A = m
0 ⊇ m

1 ⊇ m
2 ⊇ · · ·

on A = C{x1, . . . , xs}/FC{x1, . . . , xs} by defining m
α to be the image of M

α in A. It is not
hard to see that m

α is naturally isomorphic to M
α/(Mα ∩FC{x1, . . . , xs}) as a C-vector space.

Furthermore, m
α/mα+1 is a quotient of M

α/Mα+1 and is thus a C-vector space of dimension
less than or equal to

(
α+s−1

s−1

)
.

We define the Hilbert function H(α) by







H(0) = dim
(

A/m1
)

≡ 1

H(α) = dim
(

m
α/mα+1

)

for α ∈ { 1, 2, . . . },
(61)

and proceed to establish the following lemma.

Lemma 8 Let F = {f1, . . . , ft} be a system of analytic functions on an open subset of Cs

containing x̂ = 0 such that x̂ is a zero of the system. Then

H(α) = h(α)

for all α = 0, 1, 2, . . . .

Proof. Let I = FC{x1, . . . , xs} then A = C{x1, . . . , xs}/I as above. For g ∈ C{x1, . . . , xs},
write g = g(0) + g(1) + g(2) + · · · where g(λ) is the sum of all terms of total degree λ. We define
the function Inα by

Inα(g) =

{

g(α) if g(λ) = 0 for λ < α and g(α) 6= 0

0 otherwise.

For the ideal J we write Inα(J ) = {Inα(f)
∣
∣
∣f ∈ J }. It then follows a commutative diagram

0 0 0


y



y



y

0 −−−−−→ M
α+1 ∩ I −−−−−→ M

α ∩ I
Inα

−−−−−→ Inα(I) −−−−−→ 0


y



y



y

0 −−−−−→ M
α+1 −−−−−→ M

α Inα

−−−−−→ Inα(Mα) −−−−−→ 0


y



y



y

0 −−−−−→ m
α+1 −−−−−→ m

α −−−−−→ m
α/m

α+1 −−−−−→ 0


y



y



y

0 0 0

where the unmarked linear maps are the obvious inclusions or projections except for the last column.
In the last column, Inα(I) consists of forms of degree α which are initial forms of elements of
I and Inα(Mα) is just the space of all forms of degree α. So Inα(I) → Inα(Mα) is again an
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inclusion. The map Inα(Mα) → m
α/mα+1 is induced by the projection M

α → m
α, i.e. the

unique map making the bottom right square of the diagram commute.

The rows of this diagram are all exact (image in is kernel out) as are the first two columns.
Exactness of the third column then follows from the 3×3-lemma of homological algebra. Because
of this third column exactness, we have

H(α) = dim
(
m

α/mα+1
)

= dimC(Inα(Mα)) − dimC(Inα(I)) =
(

α − 1 + s

s − 1

)

− dimC(Inα(I)). (62)

Thus, to identify H(α), we only need to calculate dimC(
Inα(I)

)
, and we shall do so by using the

Macaulay matrix Sα. Write jet(I, α) for the vector space spanned by {jet(g, α)|g ∈ I}. Since
x̂ = 0, the entry in the row labeled xkfi and the column indexed xj is the coefficient of xj of
the polynomial xkfi, thus jet(I, α) is the rowspace of Sα, which is row equivalent to a matrix
in a reduced row echelon form with linearly independent rows:

Sα ' Aα =










rowspace Sα−1 Bα

0 Cα










. (63)

Each row of Cα corresponds to an element of Inα(I) by multiplying each entry by its column
index and adding. These elements clearly form a basis for Inα(I).

The total number of rows in Aα is rank ( Sα ) while the number of rows of Bα is rank ( Sα−1 ).
So the number of rows in Cα is

dimC(
Inα(I)

)
= rank (Sα ) − rank (Sα−1 )

=
((

α + s

s

)

− nullity ( Sα )
)

−
((

α − 1 + s

s

)

− nullity ( Sα−1 )
)

=
(

α − 1 + s

s − 1

)

− h(α) (64)

where the difference of binomial coefficients comes from either Pascal’s identity or noting that the
number of monomials of total degree less than or equal to α minus those of total degree less than
or equal to α − 1 is the number of monomials of total degree exactly α. Identity (59) is also
applied for the third equality. The lemma follows by combining equations (62) and (64). �

Remark: From an algebraic-geometric point of view, the rings C{x1, . . . , xs} and A =C{x1, . . . , xs}/FC{x1, . . . , xs} are local rings with M
1 and m

1 as their respective unique maximal
ideals. The ideals M

α and m
α are powers of these maximal ideals. The associated graded ring

Gr(A) =
⊕

m
α/mα+1 is also known as the tangent cone (see [8, 10, 26]). The associated graded

ring Gr(A) is, in particular, a standard graded algebra and a Hilbert function H(α) is defined as
in (61) [10, p. 185]. Much is known about the behavior of such Hilbert functions [8, 10, 20]. For
example, if for some fixed β one has H(β) = γ ≤ β, then H(α) ≤ γ for all α ≥ β. We shall
start §4.3 with a proof of this in the case γ = 0. �

Example 7 Consider the system F = {sin(x − y) + x3, x − y + sin3 y}. We calculate S4 and
reduce this exact matrix to reduced row echelon form with column headings provided:
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1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4

0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 2
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

where the rectangular boxes show the matrices Cα corresponding to the initial forms of degrees
1,2,3 and 4. Thus, for example, the initial forms of degree 3 are spanned by x3 − y3, x2y − y3

and xy2 − y3. In each case the initial form matrix is of full row rank with one more column than
row, implying h(1) = h(2) = h(3) = h(4) = 1 while h(0) is always equal to 1. Consequently,
the reduced row echelon form of S4 is sufficient to reveal that the multiplicity is at least 5. Now,
the reduced row echelon form of S5 shows the above matrix in the upper 10 × 15 block and the
identity matrix in the lower right 6 × 6 block with zeros elsewhere, which implies h(5) = 0. In
§4.3 below we shall see that the reduced row echelon form of S5 reveals the multiplicity structure
completely for this system. �

4.3 The Local Finiteness, Depth and Multiplicity Consistency Theorems.

We need one additional lemma which is a special case of Nakayama’s Lemma [4, 8].

Lemma 9 Assume F = {f1, . . . , ft} is a system of functions that are analytic in a neighborhood
of their common zero x̂ = 0 in Cs. Let I = FC{x1, . . . , xs}, A = C{x1, . . . , xs}/I and let
M

α be the ideal of series of order α or greater. Then there is a filtration

A = m
0 ⊇ m

1 ⊇ m
2 ⊇ . . . (65)

given by m
α = M

α/(Mα ∩I). Let h(α) be one of the equivalent Hilbert functions defined in (58)
and (61). The following assertions hold:

(i) If for some β > 0, m
β = m

β+1 then M
β ⊆ I.

(ii) If h(β) = 0, then h(α) = 0 for all α ≥ β.

Proof. By Lemma 6, the ideal m
β as a quotient of M

β is generated by monomials of total
degree β in x1, . . . , xs. For convenience, we list these monomials in some order a1, . . . , an

where n =
(
β+s−1

s−1

)
. Likewise, m

β+1 is generated by monomials of total degree β + 1, that is,

monomials of the non-unique form xiaj. Assuming m
β = m

β+1, each aj is a sum of elements
in C{x1, . . . , xs} multiplied by xiaj . Collecting aj , we have

ak = ck,1a1 + ck,2a2 + · · · + ck,nan

30



in the ring A. Note that each ck,j is represented by an element of m
1. We then obtain a system

of equations in A

0 = (c1,1 − 1)a1 + c1,2a2 + · · · + c1,nan

0 = c2,1a1 + (c2,2 − 1)a2 + · · · + c2,nan

...
...

0 = cn,1an + · · · + cn,n−1an−1 + (cn,n − 1)an.

However, each (cα,α − 1) is invertible in C{x1, . . . , xs} because it is a convergent series with
constant term −1 and so has a reciprocal convergent on a small open set about 0, yielding that
(cα,α−1) is also invertible in the quotient ring A. More generally, any sum of an invertible element
with an element of m

1 is invertible. Thus the determinant of the system is clearly invertible. It
follows that the system is nonsingular so each ak = 0 in A. This means ak represents some
element in I. Thus M

β ⊆ I, proving assertion (i).

For assertion (ii), note by Lemma 8, h(β) = dimC(
m

β/mβ+1
)
. So if h(β) = 0 then m

β = m
β+1

and by assertion (i), the ideal M
β ⊆ I. Since we have a descending filtration, hence M

α ⊆ M
β ⊆ I

for any α ≥ β. Consequently, m
α = M

α/(Mα ∩ I) = M
α/Mα = 0 in A. Thus m

α/mα+1 = 0
and h(α) = 0 by Lemma 8. �

The following is a more detailed version of Theorem 1.

Theorem 6 (Local Finiteness Theorem) Let R be the ring of analytic functions on an
open set U ⊆ Cs and assume x̂ = 0 ∈ U is a zero of the system F = {f1, . . . , ft} ⊂ R. Let
h(α) be the Hilbert function defined by equation (13). Then the following are equivalent:

(i) The zero x̂ of the system F is isolated.

(ii) The local ring A = C{x1, . . . , xs}/FC{x1, . . . , xs} is finite dimensional C-vector space.

(iii)
∑

α≥0 h(α) < ∞.

(iv) The dual space Dx̂(F ) is finite-dimensional, i.e. Theorem 1 holds.

(v) For a sufficiently large α, the Macaulay matrix Sα is row equivalent to a matrix
[

R B
0 C

]

where C is the n × n identity matrix with n =
(
α+s−1

s−1

)
.

(vi) For any monomial xj of sufficiently large total degree |j|, there is a pj ∈ R with
ord (pj) > |j| such that xj + pj ∈ FC[x1, . . . , xs].

Proof. (i) ⇒ (ii): By Lemma 5, for each j ∈ {1, . . . , s}, there is an integer ej with
xej ∈ FC{x1, . . . , xs}. If β = max{ej}, then any monomial xj of total degree β is contained in
FC{x1, . . . , xs}. That is, with the notation of Lemma 6, we have M

α ⊆ FC{x1, . . . , xs}. Thus
the filtration (65) terminates at or before β because m

β = 0. However

dimC(
A

)
= dimC(

A
)
− dimC(

m
β
)

=
(

dimC(
A

)
− dimC(

m
1
))

+
(

dimC(
m

1
)
− dimC(

m
2
))

+ · · · +
(

dimC(
m

β−1
)
− dimC(

m
β
))

= dimC(
m

0/m1
)

+ dimC(
m

1/m2
)

+ · · · + dimC(
m

β−1/mβ
)

< ∞ (66)

since each dimC(
m

α/mα+1
)

<
(
α+s−1

s−1

)
.
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(ii) ⇒ (iii): Equation (66) shows that

dimC(
A

)
=

∑

α≥0

dimC(
m

α/mα+1
)

=
∑

α≥0

h(α). (67)

Assertion (iii) thus follows the assumption that dimC(A) < ∞.

(iii) ⇔ (iv): Since dim
(
Dx̂(F )

)
=

∑

α≥0 h(α) by equation (13), assertions (iii) and (iv) are
equivalent.

(iii) ⇒ (v): Because
∑

α≥0 h(α) < ∞ is a sum of nonnegative integers, clearly h(α) = 0 for

sufficiently large α’s. Moreover, the equation (64) leads to dimC(
Inα(I)

)
=

(
α+s−1

s−1

)
and the

matrix Cα in (63) is thus a square matrix with linearly independent rows, implying Cα can be
transformed to the identity matrix by row operations.

(v) ⇒ (vi): By construction, since x̂ = 0, each row of Sα consists of the coefficients of jet(xjfi, α)
for some monomial in x1, . . . , xs. In the row equivalent matrix, rows are then linear combinations
of such jets. Since the jet operator is linear for fixed α, the row with a 1 in the column indexed
j consists of the coefficients of the jet of xj + pj ∈ FC[x1, . . . , xs] with ord(pj) > α.

(vi) ⇒ (i): By assertion (vi), there exists an α such that for each monomial of the form xα
j there

is xα
j + pj ∈ FC[x1, . . . , xs]. Therefore assertion (iii) of Lemma 5 is satisfied and hence x̂ is an

isolated zero. �

Theorem 7 (Depth Theorem) Let F = {f1, . . . , ft} be a system of analytic functions in an
open set of Cs with an isolated zero x̂ = 0. Then there is a positive integer δ = δx̂(F ) called
the depth of the isolated zero x̂ and the following are equivalent:

(i) δ is the largest integer with h(δ) 6= 0.

(ii) δ is the smallest integer with h(δ + 1) = 0.

(iii) δ is the highest differential order of a functional in Dx̂(F ).

(iv) δ is the smallest integer so that the Macaulay matrix Sδ+1 is row equivalent to a matrix
[

R B
0 C

]

where C is the n × n identity matrix with n =
(
δ+s
s−1

)
.

Proof. (i) ⇔ (ii): By Lemma 9, once h(α) = 0 it remains zero.

(i) ⇔ (iii): This is equation (13)

(i) ⇔ (iv): This follows from equations (63) and (64). �

We can now prove the more detailed Multiplicity Consistency Theorem below.

Theorem 8 (Multiplicity Consistency Theorem) Suppose x̂ = 0 is an isolated zero of the
analytic system F = {f1, . . . , ft} defined on an open set in Cs. If F is a square system, i.e.
t = s, and analytic, then the following four formulations of the multiplicity m of the system F
at the zero x̂ are all equivalent:

(i) m = dimC(C{x1, . . . , xs}/FC{x1, . . . , xs}
)

.
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(ii) m =
∑

α≥0 h(λ) where h(·) is the Hilbert function defined in (13).

(iii) m = dim
(
Dx̂(F )

)
.

(iv) m = dim
(C[x1, . . . , xs]/FC[x1, . . . , xs]

)
if F ∈ C[x1, . . . , xs] is a system of polynomials.

Proof. The equivalence of (i) and (ii) comes from (67), while the equivalence of (i) and (iii)
follows by combining equations (67) and (13).

If the polynomial system F is zero-dimensional (i) is equivalent to (iv) by [4, Prop. 2.11]. Otherwise
in [8, Prop 5.5.12] a calculation of the associated graded ring of C[x1, . . . , xs]/FC[x1, . . . , xs] in
terms of the initial ideal is given which is essentially identical to our argument in the proof of
Lemma 8. Equation (67) shows that the C-dimension of a zero dimensional local ring is the same
as the C-dimension of its associated graded ring which proves (i) ⇔ (iv). �

The Multiplicity Consistency Theorem immediately leads to the following corollaries.

Corollary 2 The Perturbation Invariance Theorem (Theorem 3) holds.

Proof. A straightforward verification using the equivalence of (i) and (ii) in Theorem 8 and the
Local Extension Lemma (Lemma 7). �

Corollary 3 Under the assumptions of Theorem 8, the multiplicity

m = dim
(
Dx̂(jet(F, δ + 1))

)

where δ is the depth δx̂(F ) of the system F at x̂ and jet(F, δ + 1) is the polynomial system
{jet (f1, δ + 1), . . . , jet(ft, δ + 1)}.

Proof. Since the Macaulay matrix Sα of F is identical to that of the polynomial system
jet(F,α) for α ≤ δ + 1. By (iv) of Theorem 7 jet(F, δ + 1) has depth δ and so by (iii) above
the multiplicity of the polynomial system jet(F, δ + 1) is dim

(
Dx̂(F )

)
and equals the multiplicity

of F defined in Definition 1. �

Remark: In commutative algebra the term regularity index or just index is used instead of our
depth. Specifically, the regularity index is the first β such that H(α) = HP(β) for all α ≥ β
where HP(·) is the Hilbert Polynomial [10]. In the case of an isolated zero the Hilbert Polynomial
is identically zero so the regularity index of x̂ is δx̂(F ) + 1. �
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