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Abstract4

A defective eigenvalues is well documented to be hypersensitive to data pertur-5

bations and round-off errors, making it a formidable challenge in numerical computa-6

tion particularly when the matrix is known through approximate data. This paper7

establishes a finitely bounded sensitivity of a defective eigenvalue with respect to per-8

turbations that preserve the geometric multiplicity and the smallest Jordan block size.9

Based on this perturbation theory, numerical computation of a defective eigenvalue is10

regularized as a well-posed least squares problem so that it can be accurately carried11

out using floating point arithmetic even if the matrix is perturbed.12

1 Introduction13

Computing matrix eigenvalues is one of the fundamental problems in theoretical and nu-14

merical linear algebra. Remarkable advancement has been achieved since the advent of the15

Francis QR algorithm in 1960s. However, it is well documented that multiple and defective16

eigenvalues are hypersensitive to both data perturbations and the inevitable round-off. For17

an eigenvalue of a matrix A associated with the largest Jordan block size l × l while18

A is perturbed by ∆A, the error bound [2, p. 58][3, 13] on the eigenvalue deviation is19

proportional to ‖∆A‖
1/l
2 , implying that the accuracy of the computed eigenvalue in num-20

ber of digits is a fraction 1
l

of the accuracy of the matrix data. As a result, numerical21

computation of defective eigenvalues remains a formidable challenge.22

On the other hand, it has been known that a defective eigenvalue disperses into a cluster when23

the matrix is under arbitray perturbations but the mean of the cluster is not hypersensitive24

[11, 17]. In his seminal technical report[10], Kahan proved that the sensitivity of an m-fold25

eigenvalue is actually bounded by 1
m
‖P‖2 where P is the spectral projector associated with26

the eigenvalue as long as the perturbation is constrained to preserve the algebraic multiplicity.27

The same proof and the same sensitivity also apply to the mean of the eigenvalue cluster28
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emanating from the m-fold eigenvalue with respect to perturbations. Indeed, using cluster29

means as approximations to defective eigenvalues has been extensively applied to numerical30

computation of Jordan Canonical Forms and staircase forms, provided that the clusters can31

be sorted out from the spectrum. This approach includes works of Ruhe [16], Sdridhar and32

Jordan [20], and culminated in Golub and Wilkinson’s review [7] as well as K̊agström and33

Ruhe’s JNF [8, 9]. Theoretical issues have been analyzed in, e.g. works of Demmel [4, 5] and34

Wilkinson [22, 23]. Perturbations on eigenvalue clusters are also studied as pseudospectra35

of matrices in works of Trefethon and Embree [21] as well as Rump [18, 19].36

In this paper we elaborate a different measurement of the sensitivity of a defective eigenvalue37

with respect to perturbations constrained to preserve the geometric multiplicity and the38

smallest Jordan block size. We prove that such sensitivity is also finitely bounded even if39

the multiplicity is not preserved, and it is large only if either the geometric multiplicity or40

the smallest Jordan block size can be increased by a small perturbation on the matrix. This41

sensitivity can be small even if the spectral projector norm is large, or vice versa.42

In computation, perturbations are expected to be arbitrary without preserving either the43

multiplicity or what we refer to as the multiplicity support. We prove that a certain44

type of pseudo-eigenvalue uniquely exists, is Lipschitz continuous, is backward accurate and45

approximates the defective eigenvalue with a forward accuracy in the same order of the46

data accuracy, making it a well-posed problem for computing a defective eigenvalue via47

solving a least squares problem. Based on this analysis, we develop an iterative algorithm48

PseudoEig1 that is capable of accurate computation of defective eigenvalues using floating49

point arithmetic from empirical matrix data even if the spectral projector norm is large and50

thus the cluster mean is inaccurate.51

2 Notation52

The space of dimension n vectors is Cn and the space of m × n matrices is Cm×n.53

Matrices are denoted by upper case letters A, X , and G, etc, with O representing a54

zero matrix whose dimensions can be derived from the context. Boldface lower case letters55

such as x and y represent vectors. Particularly, the zero vector in Cn is denoted by 0n56

or simply 0 if the dimension is clear. The conjugate transpose of a matrix or vector (·)57

is denoted by (·)H, and the Moore-Penrose inverse of a matrix (·) is (·)†. The submatrix58

formed by entries in rows i1, . . . , i2 and columns j1, . . . , j2 of a matrix A is denoted by59

Ai1:i2,j1:j2. The kernel and range of a matrix (·) are denoted by Kernel (·) and Range(·)60

respectively. The notation eig(·) represents the spectrum of a matrix (·).61

We also consider vectors in product spaces such as C × Cm×k. In such cases, the vector62

2-norm is the square root of the sum of squares of all components. For instance, a vector63

(λ,X) ∈ C×Cn×k can be arranged as a column vector u in Cnk+1 and ‖(λ,X)‖2 = ‖u‖264

regardless of the ordering. A zero vector in such a vector space is also denoted by 0.65

Let λ∗ be an eigenvalue of a matrix A ∈ Cn×n. Its algebraic multiplicity can be partitioned66

1A permanent website homepages.neiu.edu/∼zzeng/pseudoeig.html is set up to provide Matlab
source codes and other resources for Algorithm PseudoEig.
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into a non-increasing sequence {l1, l2, . . . } of integers called the Segre characteristic [6]67

that are the sizes of elementary Jordan blocks, and there is a matrix X∗ ∈ Cn×m such that68

AX∗ = X∗







Jl1(λ∗)
Jl2(λ∗)

. . .






where Jk(λ∗) =













λ∗ 1

λ∗

. . .

. . . 1
λ∗













k×k

.

For convenience, a Segre characteristic is infinite in formality and the number of nonzero69

entries is the geometric multiplicity. The last nonzero component of a Segre characteristic,70

namely the size of the smallest Jordan block associated with λ∗, is of particular importance71

in our analysis and we shall call it the Segre characteristic anchor or simply Segre anchor.72

5 5 4 4 3 

geometric multiplicity 

Segre characteristic: 

multiplicity support 

              5 x 3 

multip

Figure 1: Illustration of the multiplicity support for
a defective eigenvalue

For instance, if λ∗ is an eigenvalue of73

A associated with elementary Jordan74

blocks J5(λ∗), J5(λ∗), J4(λ∗), J4(λ∗)75

and J3(λ∗), its Segre characteristic76

is {5, 5, 4, 4, 3, 0, . . .} with a Segre an-77

chor 3. The geometric multiplicity78

is 5. A Segre characteristic along79

with its conjugate that is called the80

Weyr characteristic can be illustrated81

by a Ferrer’s diagram [6] in Fig. 1,82

where the geometric multiplicity and83

the Segre anchor represent the dimen-84

sions of the base rectangle occupied85

by the equal leading entries of the86

Weyr characteristic.87

For a matrix A, we shall say the multiplicity support of its eigenvalue λ∗ is m × k if88

the geometric multiplicity of λ∗ is m and the Segre anchor is k. In this case, there is a89

unique X∗ ∈ Cn×k satisfying the equations90

(A− λ∗I)X∗ = X∗ Jk(0)

CH X∗ = T

with proper choices of C ∈ Cn×m and91

T =

[

1 0⊤
k−1

0m−1 O(m−1)×(k−1)

]

∈ Cm×k. (1)

as we shall prove in Lemma 3.2. Here Jk(0) is a nilpotent upper-triangular matrix of rank92

k− 1 and can be replaced with any matrix of such kind. For integers m, k ≤ n, we define93

a holomorphic mapping94

g : Cn×n ×C×Cn×k −→ Cn×k ×Cm×k

(G, λ,X) 7−→

(

(G− λI)X −X S

CH X − T

)

(2)
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that depends on parameters C ∈ Cn×m and an upper-triangular nilpotent matrix95

S =













0 s12 · · · s1k
...

. . .
. . .

...
...

. . . sk−1,k

0 · · · · · · 0













with s12s23 · · · sk−1,k 6= 0 (3)

of rank k − 1. We shall denote the Jacobian and partial Jacobian96

g
GλX

(G0, λ0, X0) =
∂g(G, λ,X)

∂(G, λ,X)

∣

∣

∣

∣

(G,λ,X)=(G0,λ0,X0)

g
λX
(G0, λ0, X0) =

∂g(G0, λ,X)

∂(λ,X)

∣

∣

∣

∣

(λ,X)=(λ0,X0)

at particular G0, λ0 and X0 that can be considered linear transformations97

g
GλX

(G0, λ0, X0) : Cn×n ×C×Cn×k −→ Cn×k ×Cm×k

(G, λ,X) 7−→

(

(G− λI)X0 + (G0 − λ0I)X −X S

CH X

)

(4)
and98

g
λX
(G0, λ0, X0) : C×Cn×k −→ Cn×k ×Cm×k

(λ,X) 7−→

(

−λX0 + (G0 − λ0I)X −X S

CH X

)

(5)

respectively. The actual matrices representing the Jacobians depend on the ordering of the99

bases for the domains and codomains of those linear transformations. The Moore-Penrose100

inverse of a linear transformation such as g
λX
(G0, λ0, X0)

† is the linear transformation whose101

matrix representation is the Moore-Penrose inverse matrix of the matrix representation for102

g
λX
(G0, λ0, X0) corresponding to the same bases.103

3 Properties of the multiplicity support104

The following lemma asserts a basic property of the multiplicity support.105

Lemma 3.1 Let A ∈ Cn×n with an eigenvalue λ∗ of multiplicity support m× k. Then106

Kernel
(

(A− λ∗I)
j
)

⊂ Range(A− λ∗I) for j = 1, 2, . . . , k − 1. (6)

Furthermore, there is an open and dense subset C of Cn×m such that, for every C ∈ C,107

the solution x∗ of the equation108

CH x =
[

1
0

]

for x ∈ Kernel (A− λ∗I) (7)

uniquely exists and satisfies x∗ ∈
(

⋂k−1
j=1 Range

(

(A− λ∗I)
j
)

)

\ Range
(

(A− λ∗I)
k
)

.109
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Proof. From the multiplicity support of λ∗, there are m elementary Jordan blocks of110

sizes ℓ1 ≥ · · · ≥ ℓm respectively with ℓm = k along with m sequences of generalized111

eigenvectors
{

x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
ℓi

}m

i=1
such that (A− λ∗I)x

(i)
j+1 = x

(i)
j for i = 1, . . . , m and112

j = 1, . . . , ℓi − 1. Moreover, Kernel
(

(A− λ∗I)
j
)

= span
{

x
(i)
l

∣

∣ 1 ≤ l ≤ j, 1 ≤ i ≤ m
}

and113

thus (6) holds. Furthermore (A−λ∗I)
j x

(i)
j+1 = x

(i)
1 for j = 1, . . . , ℓi−1 and i = 1, . . . , m.114

Namely every z ∈ Kernel (A− λ∗I) is in
⋂k−1

j=1 Range
(

(A− λ∗I)
j
)

since ℓi ≥ k for all i.115

However, x
(m)
1 6∈ Range

(

(A− λ∗I)
k
)

since116

(A− λ∗I)
k
[

x
(m)
1 , · · · ,x

(m)
ℓm

]

=
[

x
(m)
1 , · · · ,x

(m)
ℓm

]

Jk(0)
k = O

and Cn is the direct sum of those invariant subspaces, implying at least one vector in the117

basis of Kernel (A − λ∗I) is not in Range
(

(A − λ∗I)
k
)

so the dimension of the subspace118

K = Kernel (A− λ∗I) ∩ Range
(

(A− λ∗I)
k
)

is less than m.119

Let columns of N ∈ Cn×m form an orthonormal basis for Kernel (A − λ∗I) and denote120

C0 =
{

C ∈ Cn×m
∣

∣ (CHN)−1 exists
}

, which is open since (C + ∆C)HN is invertible if121

CHN is invertible and ‖∆C‖2 is sufficiently small. For any C 6∈ C0 so that CHN is122

rank-deficient, we have (C − εN)HN = CHN − ε I is invertible for all ε 6∈ eig(CHN) so123

C − εN ∈ C0 and C0 is thus dense. The equation (7) then has a unique solution124

x∗ = N (CH N)−1
[

1
0

]

for every C ∈ C0. Let C ⊂ C0 such that the x∗ 6∈ K for every C ∈ C. Clearly125

C is open since, for every C ∈ C, we have x̂ = N
(

(C + ∆C)H N
)−1

[

1
0

]

6∈ K for126

sufficiently small ‖∆C‖2 and thus C + ∆C ∈ C. To show C is dense in C0, let127

C ∈ C0 with the corresponding x∗ ∈ K. Since dim(K) < m, there is a unit vector128

x̂ ∈ Kernel (A− λ∗I) \ K. For any ε ≥ 0, let D(ε) = − x∗+ε x̂
‖x∗+ε x̂‖22

x̂H C. There is a µ > 0129

such that
∥

∥D(ε)
∥

∥

2
≤ µ for all ε ∈ [0, 1] since minε∈[0,1] ‖x∗ + ε x̂‖2 > 0. Then130

(

C + εD(ε)
)

H

(x∗ + ε x̂) = CH x∗ + ε CHx̂− ε CH x̂
(x∗ + ε x̂)H

‖x∗ + ε x̂‖22
(x∗ + ε x̂) =

[

1
0

]

with x∗ + ε x̂ ∈ Kernel (A + λ∗I) \ K for all ε ∈ (0, 1) and
∥

∥εD(ε)
∥

∥

2
< εµ. Namely,131

the matrix C + εD(ε) ∈ C for sufficiently small ε and approaches to C when ε → 0,132

implying C is dense in C0 that is dense in Cn×m so the lemma is proved. �133

The following lemma sets the foundation for our sensitivity analysis and algorithm develop-134

ment on a defective eigenvalue by laying out critical properties of the mapping (2).135

Lemma 3.2 Let A ∈ Cn×n with λ∗ ∈ eig(A) of multiplicity support m∗ × k∗ and g136

be as in (2) with S and T as in (3) and (1) respectively. The following assertions hold.137

(i) For almost all C ∈ Cn×m, there is an X∗ ∈ Cn×k such that g(A, λ∗, X∗) = 0 if138

and only if m ≤ m∗ and k ≤ k∗. Such an X∗ is unique if and only if m = m∗.139

(ii) Let m ≤ m∗ and k ≤ k∗. For almost all C ∈ Cn×m in g with g(A, λ∗, X∗) = 0,140

the linear transformation g
GλX

(A, λ∗, X∗) is surjective, and g
λX
(A, λ∗, X∗) is in-141

jective if and only if m = m∗ and k = k∗.142
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(iii) Let m = m∗, k = k∗ and g(A, λ∗, X∗) = 0. Then C and S can be modified so143

that the columns of X∗ are orthonormal.144

Proof. Let N ∈ Cn×m∗ be a matrix whose columns span the kernel Kernel (A − λ∗I).145

We shall prove the assertion (i) by an induction. For almost all C ∈ Cn×m, the matrix146

CHN is of full row rank if m ≤ m∗ so that there is a u ∈ Cm such that (CH N)u = T1:m,1147

while u is unique if and only if m = m∗. For m ≤ m∗, let x1 = N u and assume vectors148

x1, . . . ,xj ∈ Cn are obtained such that 1 ≤ j < k and149

(A− λ∗I)
[

x1, · · · ,xj

]

=
[

x1, · · · ,xj

]

S1:j,1:j

CH
[

x1, · · · ,xj

]

= T1:m,1:j

Then x1, . . . ,xj ∈ Kernel
(

(A− λ∗I)
j
)

from (S1:j,1:j)
j = O, and (6) implies the equation150

(A− λ∗I)x = s1,j+1x1 + · · ·+ sj,j+1xj ≡ [x1, . . . ,xj]S1:j,j+1

has a particular solution u ∈ Cn and a unique solution xj+1 = u−N (CHN)−1CHu such151

that CH xj+1 = 0 when m = m∗. By induction, there is an X∗ =
[

x1, · · · ,xk

]

∈ Cn×k
152

such that (λ∗, X∗) is a solution to the system g(A, λ,X) = 0 and X∗ is unique if and153

only if m = m∗. The assertion (i) is proved.154

Assume g(A, λ∗, X∗) = 0 and write X∗ =
[

x1, · · · ,xk

]

. Then x1 6= 0 and, by S1:j,1:j155

being upper triangular nilpotent, xj ∈ Kernel
(

(A − λ∗I)
j
)

\ Kernel
(

(A − λ∗I)
j−1

)

for156

j = 1, . . . , k so X∗ is of full column rank and X†
∗X∗ = I. Furthermore, the Jacobian157

g
GλX

(A, λ∗, X∗) is surjective since, for any U ∈ Cn×k and V ∈ Cm×k, a straightforward158

calculation using (4) yields159

g
GλX

(A, λ∗, X∗)
(

(U − (A− λ∗I)C
H†V + CH†V S)X†

∗, 0, C
H† V

)

=
(

U
V

)

using CH CH† = I when C is of full column rank. Let (A, λ∗, X̂) be a zero of g and160

assume m = m∗ and k = k∗. Then, for almost all C ∈ Cn×m, the solution u = û of161

the equation (CH N)u = T1:m,1 is unique and the first column of X̂ , from Lemma 3.1, is162

x̂1 = N û ∈
(

⋂k−1
j=1 Range

(

(A− λ∗I)
j
)

)

\ Range
(

(A− λ∗I)
k
)

. (8)

Assume, for certain (σ, Y ) ∈ C×Cn×k, its image g
λX
(A, λ∗, X̂)

(

σ, Y
)

= 0. By (5),163

− σ X̂ + (A− λ∗I) Y − Y S = O (9)

CH Y = O. (10)

Right-multiplying both sides of the equation (9) by S yields

Y S2 + σ X̂ S = (A− λ∗I) Y S

= (A− λ∗I)
2 Y − σ (A− λ∗I) X̂ (by (9))

= (A− λ∗I)
2 Y − σ X̂ S, (by (A− λ∗I)X̂ = X̂S)

6



namely164

(A− λ∗I)
2 Y = Y S2 + 2 σ X̂ S.

Continuing the process of recursive right-multiplying the above equation by S leads to165

(A− λ∗I)
k Y = Y Sk + k σ X̂ Sk−1 = k σ s12 s23 · · · sk−1,k

[

On×(k−1), x̂1

]

with s12 s23 · · · sk−1,k 6= 0. Hence σ = 0 due to (8). Denote columns of Y as166

y1, . . . ,yk ∈ Cn. Then the first columns of the equations (9) and (10) are (A−λ∗I)y1 = 0167

and CH y1 = 0 that imply y1 = 0. For 1 ≤ j < k, using σ = 0 and y1 = · · · = yj = 0168

on the (j + 1)-th columns of the equations (9) and (10) we have yj+1 = 0. Thus Y = O.169

As a result, (A, λ∗, X̂) is a zero of g with injective partial Jacobian g
λX
(A, λ∗, X̂).170

If m < m∗, the solution (λ∗, X∗) of g(A, λ,X) = 0 is on an algebraic variety of a171

positive dimension and thus g
λX
(A, λ∗, X∗) is not injective. Let m = m∗, we now172

prove the partial Jacobian g
λX
(A, λ∗, X̂) is injective only if k = k∗. Assume k < k∗173

and write X̂ =
[

x̂1, · · · , x̂k

]

. Since g(A, λ∗, X̂) = 0 and S is upper-triangular174

nilpotent, hence x̂j ∈ Kernel
(

(A − λ∗I)
j
)

for j = 1, . . . , k. Then k < k∗ implies175

x̂1, . . . , x̂k ∈ Range(A − λ∗I). For almost all C ∈ Cn×m, the matrix
[

A− λ∗I
CH

]

is of176

full column rank and the vector y1 = 1
s12

x̂2 is the unique solution to the linear system177

[

A− λ∗I
CH

]

z =
[

x̂1

0

]

. Using an induction, assume y1, . . . ,yj ∈ span{x̂2, . . . , x̂j+1} for any178

j < k such that179

−
[

x̂1, · · · , x̂j

]

+ (A− λ∗I)
[

y1, · · · ,yj

]

−
[

y1, · · · ,yj

]

S1:j,1:j = O

CH
[

y1, · · · ,yj

]

= O.

Then y1, . . . ,yj ∈ Kernel
(

(A − λ∗I)
j+1

)

and (6) imply that there is a unique vector180

z = yj+1 ∈ span{x1, . . . , x̂j+1} satisfying181

(A− λ∗I)z = x̂j+1 + s1,j+1y1 + · · ·+ sj,j+1yj and CH z = 0.

Write Y =
[

y1, · · · ,yk

]

. We have g
λX
(A, λ∗, X̂)

(

1, Y
)

= 0 and thus the partial Jacobian182

g
λX
(A, λ∗, X̂) is not injective. As a result, the assertion (ii) is proved.183

We now prove (iii). Let g(A, λ∗, X̂) = 0 for certain parameters C and S. We can184

assume C and S are properly scaled so that ‖X̂1:n,1‖2 = 1. Reset C1:n,1 as X̂1:n,1,185

X̂1:n,2:k as X̂1:n,2:k− X̂1:n,1 (X̂1:n,1)
HX̂1:n,2:k and S1,1:k as S1,1:k+(X̂1:n,1)

HX̂1:n,2:k S2:k,1:k so186

that g(A, λ∗, X̂) = 0 still holds and (X̂1:n,2:k)
HX̂1:n,1 = 0. As a result, there is a thin QR187

decomposition X̂ = QR with R1,1:k = [1, 0, · · · , 0]. Reset X∗ = Q and S as RS R−1.188

It is thus a straightforward verification that g(A, λ∗, X∗) = 0 with (X∗)
HX∗ = I. �189

4 Sensitivity of a defective eigenvalue190

Based on Lemma 3.2 and the Implicit Function Theorem, the following lemma establishes191

the defective eigenvalue as a holomorphic function of certain entries of the matrix.192

7



Lemma 4.1 Assume A ∈ Cn×n and λ∗ ∈ eig(A) of multiplicity support m×k. Let g be193

defined in (2) using proper parameters C ∈ Cn×m and S ∈ Cn×k so that g(A, λ∗, X∗) = 0194

with a surjective g
GλX

(A, λ∗, X∗) and an injective g
λX
(A, λ∗, X∗). There is a neighborhood195

Ω of certain z∗ in Cn2−mk+1 and a neighborhood Σ of (A, λ∗, X∗) in Cn×n×C×Cn×k
196

along with holomorphic mappings G : Ω −→ Cn×n, λ : Ω −→ C and X : Ω −→ Cn×k
197

with
(

G(z∗), λ(z∗), X(z∗)
)

= (A, λ∗, X∗) such that g(G0, λ0, X0) = 0 for (G0, λ0, X0) ∈ Σ198

if and only if (G0, λ0, X0) = (G(z0), λ(z0), X(z0)) for certain z0 ∈ Ω.199

Proof. Since the mapping (G, λ,X) 7→ g(G, λ,X) has a surjective g
GλX

(A, λ∗, X∗)200

to Cn×k × Cm×k and an injective g
λX
(A, λ∗, X∗) from C × Cn×k, there are mk − 1201

entries of the variable G ∈ Cn×n forming a variable y such that the partial Jacobian202

g
yλX

(A, λ∗, X∗) is invertible. By the Implicit Function Theorem, the remaining entries of203

G excluding y form a variable vector z ∈ Cn2−mk+1 so that the assertion holds. �204

From the proof of Lemma 4.1, the components of the variable z are identical to n2−mk+1205

entries of the matrix G(z). We can now establish one of the main theorems of this paper.206

Theorem 4.2 (Eigenvalue Sensitivity Theorem) The sensitivity of an eigenvalue is207

finitely bounded if its multiplicity support is preserved. More precisely, let A ∈ Cn×n and208

λ∗ ∈ eig(A) with a multiplicity support m× k. There is a neighborhood Φ of (A, λ∗) in209 Cn×n × C and a neighborhood Ω of certain z∗ in Cn2−mk+1 along with holomorphic210

mappings G : Ω → Cn×n and λ : Ω → C with (A, λ∗) =
(

G(z∗), λ(z∗)
)

such that211

every (Ã, λ̃) ∈ Φ with λ̃ ∈ eig
(

Ã
)

of multiplicity support m× k is equal to
(

G(z̃), λ(z̃)
)

212

for certain z̃ ∈ Ω. Furthermore,213

lim sup
z→z∗

∣

∣λ(z)− λ∗

∣

∣

‖G(z)− A‖
F

≤
∥

∥g
λX
(A, λ∗, X∗)

†
∥

∥

2
< ∞ (11)

where X∗ ∈ Cn×k satisfies g(A, λ∗, X∗) = 0 for the mapping g defined in (2) that214

renders columns of X∗ orthonormal.215

Proof. Let Σ and Ω be the neighborhoods specified in Lemma 4.1 along with the216

holomorphic mappings G and λ. For any (Ã, λ̃) sufficiently close to (A, λ∗) with217

λ̃ ∈ eig(A) of multiplicity support m × k, the matrix
[

Ã− λ̃I
CH

]

is of full rank so218

there is a unique X̃ such that g(Ã, λ̃, X̃) = 0. Furthermore, the linear transformation219

X 7→
(

(Ã − λ̃I)X − X S, CHX
)

is injective from Cn×k to Cn×k × Cm×k, implying220

‖X̃−X∗‖F can be as small as needed so that (Ã, λ̃, X̃) ∈ Σ and thus (Ã, λ̃) = (G(z), λ(z))221

for certain z ∈ Ω. Consequently, the neighborhood Φ of (A, λ∗) exists.222

From Lemma 4.1, we have g
(

G(z), λ(z), X(z)
)

≡ 0 for all z ∈ Ω. As a result,223

0 =
(

∂g(G(z),λ(z),X(z))
∂z

∣

∣

∣

z=z∗

)

(z− z∗)

= g
G
(A, λ∗, X∗)Gz(z∗) (z− z∗) + g

λX
(A, λ∗, X∗)

(

∂(λ(z),X(z))
∂z

∣

∣

∣

z=z∗

)

(z− z∗)
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implying224

∣

∣λ(z)− λ∗

∣

∣ ≤
∥

∥

(

λ(z), X(z)
)

−
(

λ∗, X∗

)
∥

∥

2

=
∥

∥

∥

∂(λ(z),X(z))
∂z

∣

∣

∣

z=z∗

(z− z∗)
∥

∥

∥

2
+O

(
∥

∥z− z∗
∥

∥

2

2

)

=
∥

∥g
λX
(A, λ∗, X∗)

† g
G
(A, λ∗, X∗)Gz(z∗) (z− z∗)

∥

∥

2
+O

(
∥

∥z− z∗
∥

∥

2

2

)

≤
∥

∥g
λX
(A, λ∗, X∗)

†
∥

∥

2

∥

∥G(z)− A
∥

∥

F
+O

(
∥

∥z− z∗
∥

∥

2

2

)

since the partial Jacobian g
G
(A, λ∗, X∗) is the linear transformation G 7→ GX∗ with225

a unit operator norm due to orthonormal columns of X∗, leading to (11). The norm226

∥

∥g
λX
(A, λ∗, X∗)

†
∥

∥

2
is finite because g

λX
(A, λ∗, X∗) is injective by Lemma 3.2. �227

In light of Theorem 4.2, we introduce the m× k condition number228

τA,m×k(λ∗) := inf
C,S

∥

∥g
λX
(A, λ∗, X∗)

†
∥

∥

2
(12)

of an eigenvalue λ∗ ∈ eig(A) where g is as in (2) and the infimum is taken over all the229

proper choices of matrix parameters C and S that render the columns of the unique X∗230

orthonormal so that g(A, λ∗, X∗) = 0. We shall refer to τA,m×k(λ∗) as the multiplicity231

support condition number if the specific m and k are irrelevant in the discussion. From232

Lemma 3.2, the m×k condition number is infinity only if either m is less than the actual233

geometric multiplicity or k is less than the Segre anchor. Consequently, the condition234

number τA,m×k(λ∗) is large only if A is close to a matrix Ã that possesses an eigenvalue235

λ̃ ≈ λ∗ whose multiplicity support is m̃× k̃ with either m̃ > m or k̃ > k. As a special236

case, the condition number τA,1×1(λ∗) measures the sensitivity of a simple eigenvalue λ∗.237

We can now revisit the old question:238

Is a defective eigenvalue hypersensitive to perturbations?

The answer is not as simple as the question may seem to be. It is well documented in239

the literature that, under an arbitrary perturbation ∆A on the matrix A, a defective240

eigenvalue of A generically disperses into a cluster of eigenvalues with an error bound241

proportional to
∥

∥∆A
∥

∥

1
l

2
where l is the size of the largest Jordan block associated with the242

eigenvalue [2, p. 58][3, 13]. Similar and related sensitivity results can be found in the works243

such as [1, 14, 15]. This error bound implies that the asymptotic sensitivity of a defective244

eigenvalue is infinity, and only a fraction 1
l

of the data accuracy passes on to the accuracy245

of the eigenvalue. For instance, if the largest Jordan block is 5×5, only three correct digits246

can be expected from the computed eigenvalues regarding the defective eigenvalue since one247

fifth the hardware precision (about 16 digits) remains in the forward accuracy.248

It is also known that the mean of the cluster emanating from the defective eigenvalue under249

perturbations is not hypersensitive [11, 17]. Kahan is the first to discover the finite sensitivity250

1
m

∥

∥P‖2 of a multiple eigenvalue under constrained perturbations that preserve the algebraic251

multiplicity m, where P is the spectral projector associated with the eigenvalue. This252

spectral projector norm is large only if a small perturbation on the matrix can increase the253
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multiplicity [10]. As pointed out by Kahan, the seemingly infinite sensitivity of a multiple254

eigenvalue may not be a conceptually meaningful measurement for the condition of a multiple255

eigenvalue since arbitrary perturbations do not maintain the characteristics of the eigenvalue256

as being multiple. Theorem 4.2 sheds light on another intriguing and pleasant property of a257

defective eigenvalue: Its algebraic multiplicity does not need to be maintained under data258

perturbations for its sensitivity to be under control, as long as the geometric multiplicity and259

the Segre anchor are preserved. As a result, the condition number τA,m×k(λ∗) provides260

a new and different measurement on the sensitivity of a defective eigenvalue λ∗ when its261

multiplicity support is preserved.262

The same eigenvalue can be ill-conditioned in the spectral projector norm while being well263

conditioned in multiplicity support condition number and vice versa (c.f. Example 4 in §10)264

with no contradiction whatsoever.265

More importantly, the finite sensitivity enables accurate numerical computation of a defective266

eigenvalue from imposing the constraints on the multiplicity support, as we shall demonstrate267

in later sections. Even if perturbations are unconstrained, the problem of computing a268

defective eigenvalue may not have to be hypersensitive at all if the problem is properly269

generalized, i.e. regularized. We shall prove in Theorem 5.2 that the m × k condition270

number still provides the finitely bounded sensitivity of λ∗ as what we call the m × k271

pseudo-eigenvalue of A, and this condition number is large only if m or k can be272

increased by small perturbations.273

There are further subtleties on the condition of a defective eigenvalue. The sensitivity is274

finitely bounded if the multiplicity or the multiplicity support of the eigenvalue is preserved.275

Denote the collection of n×n complex matrices having an eigenvalue that shares the same276

multiplicity support m× k as Enm×k. Every A ∈ Enm×k has an eigenvalue λ∗ along with277

an X∗ such that (A, λ∗, X∗) belongs to an algebraic variety defined by the solution set278

of the polynomial system g(G, λ,X) = 0. The set Enm×k is not a manifold in general so279

the Tubular Neighborhood Theorem does not apply. As a result, maintaining a multiplicity280

support is not enough to dampen the sensitivity of a particular defective eigenvalue with281

that multiplicity support. The matrix staying on Enm×k does not guarantee the finite282

sensitivity of a defective eigenvalue. If a matrix A ∈ Enm×k has two eigenvalues of the same283

multiplicity support m × k, then A is in the intersection of images of two holomorphic284

mappings described in Lemma 4.1. When A drifts on Enm×k, the multiplicity support285

m×k may be maintained for one eigenvalue but lost on the other. Consequently, the other286

defective eigenvalue still disperses into a cluster.287

5 A well-posed defective eigenvalue problem288

A mathematical problem is said to be well-posed if its solution satisfies three crucial proper-289

ties: Existence, uniqueness and Lipschitz continuity. The problem of finding an eigenvalue290

of a matrix in its conventional meaning is ill-posed when the eigenvalue is defective because291

the sensitivity of the eigenvalue is infinite with respect to arbitrary perturbations on the292

matrix. Lacking Lipschitz continuity with respect to data, such a problem is not suitable293

for numerical computation unless the problem is properly modified, or better known as being294
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regularized.295

We can alter the problem of296

finding an eigenvalue of a matrix A

to297

finding a λ∗ so that (λ∗, X∗) is local least squares solution to g(A, λ,X) = 0

where g is the mapping defined in (2) with proper parameters. We shall show that the298

latter problem is a regularization of the former.299

For any fixed matrix A, a local least squares solution (λ̂, X̂) to the equation g(A, λ,X) = 0300

is the minimum point to ‖g(A, λ,X)‖2 in an open subset of C×Cn×k where301

g
λX
(A, λ̂, X̂)† g(A, λ̂, X̂) = 0

if g
λX
(A, λ̂, X̂) is injective. The least squares solution (λ∗, X∗) of g(A, λ,X) = 0 can302

be solved by the Gauss-Newton iteration303

(λj+1, Xj+1) = (λj, Xj)− g
λX
(A, λj , Xj)

† g(A, λj, Xj), j = 0, 1, . . . (13)

based on the following local convergence lemma that is adapted from [24, Lemma 2].304

Lemma 5.1 [24] Let g be the mapping in (2). For a fixed A ∈ Cn×n, assume (λ∗, X∗)305

is a local least squares solution to g(A, λ,X) = 0 with an injective g
λX
(A, λ∗, X∗). There306

is an open convex neighborhood D of (λ∗, X∗) and constants ζ, γ > 0 such that307

∥

∥g
λX
(A, λ,X)†

∥

∥

2
≤ ζ, (14)

∥

∥g(A,λ,X) − g(A, λ̃, X̃)− g
λX

(A, λ̃, X̃) ((λ,X) − (λ̃, X̃))
∥

∥

2
≤ γ

∥

∥(λ,X) − (λ̃, X̃)
∥

∥

2

2
(15)

for all (λ,X), (λ̃, X̃) ∈ D. Assume there is a σ < 1 such that, for all (λ,X) ∈ D,308

∥

∥

(

g
λX
(A, λ,X)† − g

λX
(A, λ∗, X∗)

†
)

g(A, λ∗, X∗)
∥

∥

2
≤ σ

∥

∥(λ,X)− (λ∗, X∗)
∥

∥

2
. (16)

Then, from all (λ0, X0) ∈ D such that
∥

∥(λ0, X0)− (λ∗, X∗)
∥

∥

2
< 1−σ

ζ γ
and309

{

(λ,X) ∈ C×Cn×k
∣

∣ ‖(λ,X)− (λ∗, X∗)‖2 < ‖(λ0, X0)− (λ∗, X∗)‖2
}

⊂ D, (17)

the Gauss-Newton iteration (13) is well defined in D, converges to (λ∗, X∗) and satisfies310

∥

∥(λj+1, Xj+1)− (λ∗, X∗)
∥

∥

2
≤ µ

∥

∥(λj, Xj)− (λ∗, X∗)
∥

∥

2

for j = 0, 1, . . . with µ = σ + ζ γ
∥

∥(λ0, X0)− (λ∗, X∗)
∥

∥

2
< 1. �311

When the matrix A has an eigenvalue λ∗ of multiplicity support m× k, there is an X∗312

such that (λ∗, X∗) is an exact solution to g(A, λ,X) = 0. However, when A is known313

through its empirical data in Ã, a local least squares solution (λ̃, X̃) to the equation314

g(Ã, λ,X) = 0 generally has a residual
∥

∥g(Ã, λ̃, X̃)
∥

∥

2
> 0, and λ̃ may not be an315

eigenvalue of either A or Ã. For the convenience of elaboration, we call such a λ̃ an316

m × k pseudo-eigenvalue of Ã. By changing the conventional problem of computing an317

eigenvalue to a modified problem of finding a pseudo-eigenvalue, the defective eigenproblem318

is regularized as a well-posed problem as asserted in the main theorem of this paper.319
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Theorem 5.2 (Pseudo-Eigenvalue Theorem) Let λ∗ be an eigenvalue of A ∈ Cn×n
320

with a multiplicity support m × k along with X∗ ∈ Cn×k satisfying g(A, λ∗, X∗) = 0321

where g is as in (2) with proper parameters C and S. The following assertions hold.322

(i) The exact eigenvalue λ∗ of A is an m× k pseudo-eigenvalue of A.323

(ii) There are neighborhoods Φ of A in Cn×n and Λ of λ∗ in C such that every324

matrix Ã ∈ Φ has a unique m × k pseudo-eigenvalue λ̃ ∈ Λ that is Lipschitz325

continuous with respect to Ã.326

(iii) For every matrix Ǎ ∈ Φ serving as empirical data of A, there is a unique m× k327

pseudo-eigenvalue λ̌ ∈ Λ of Ǎ such that328

∣

∣λ̌− λ∗

∣

∣ ≤ τA,m×k(λ∗)
∥

∥Ǎ− A
∥

∥

2
+O

(
∥

∥Ǎ−A
∥

∥

2

2

)

. (18)

(iv) The λ̌ in (iii) is an exact eigenvalue of Ǎ+E X̌† with a Jordan block of size at least k329

where X̌ is the least squares solution of g(Ǎ, λ̌, X) = 0 and E = (Ǎ− λ̌ I) X̌−X̌ S.330

When X̌HX̌ = I, the backward error ‖E X̌†‖
F

is bounded by
∥

∥g(Ǎ, λ̌, X̌)
∥

∥

2
.331

Proof. The assertion (i) is a result of Lemma 3.2 (i). For any r > 0, denote332

Ψr =
{

(λ,X) ∈ C×Cn×k
∣

∣ ‖(λ,X)− (λ∗, X∗)‖2 < r
}

and let r0 > 0 such that {A}×Ψr0333

is a subset of Σ in Lemma 4.1. Let r ∈ (0, r0). Assume there is a matrix Ã with334

‖Ã−A‖2 < ε for any ε > 0 such that min(λ,X)∈Ψr

∥

∥g(Ã, λ,X)
∥

∥

2
is not attainable in Ψr.335

Let ε→ 0. Then Ã→ A and there exists an (λ̂, X̂) ∈ Ψr \Ψr such that ‖g(A, λ̂, X̂)‖2336

is the minimum 0 of
∥

∥g(A, λ,X)
∥

∥

2
for (λ,X) ∈ Ψr and (λ̂, X̂) 6= (λ∗, X∗). This is337

a contradiction to Lemma 4.1. As a result, there is a neighborhood Φr of A for every338

r ∈ (0, r0) such that min(λ,X)∈Ψr
‖g(Ã, λ,X)‖2 is attainable at certain (λ̃, X̃) ∈ Ψr for339

every Ã ∈ Φr, implying the existence of the pseudo-eigenvalue λ̃.340

By Lemma 5.1, we can assume r1 ∈ (0, r0) is small so that the inequalities (14), (15) and341

(16) hold for σ = 0 and ‖(λ,X)− (λ̃, X̃)‖2 < 1
2 (2ζ) (2γ)

for all (λ,X), (λ̃, X̃) ∈ Ψr1. By342

the continuity of g, the corresponding Φr1 can be chosen so that, for every Â ∈ Φr1 with343

a local minimum point (λ̂, X̂) ∈ Ψr1 for ‖g(Â, λ,X)‖2, we have
∥

∥g
λX
(Â, λ,X)†

∥

∥

2
< 2ζ ,344

∥

∥g(Â, λ,X)− g(Â, λ̃, X̃)− g
λX
(Â, λ̃, X̃) ((λ,X)− (λ̃, X̃))

∥

∥

2
< 2γ

∥

∥(λ,X)− (λ̃, X̃)
∥

∥

2

2
,

∥

∥

(

g
λX
(Â, λ,X)† − g

λX
(Â, λ̂, X̂)†

)

g(Â, λ̂, X̂)
∥

∥

2
≤ 1

2

∥

∥(λ,X)− (λ̂, X̂)
∥

∥

2

for all (λ,X), (λ̃, X̃) ∈ Ψr1. Let r2 = 1
3
r1, Ψ = Ψr2 and Φ = Φr1 ∩ Φr2 . For every345

Â ∈ Φ, the minimum of ‖g(Â, λ,X)‖2 is attainable at (λ̂, X̂) ∈ Ψ and, for any initial346

iterate (λ0, X0) ∈ Ψ, we have ‖(λ0, X0)− (λ̂, X̂)‖2 < 1
2 (2ζ) (2γ)

=
1− 1

2

(2ζ) (2γ)
and the set347

Ω =
{

(λ,X) ∈ C×Cn×k
∣

∣ ‖(λ,X)− (λ̂, X̂)‖2 < ‖(λ0, X0)− (λ̂, X̂)‖2
}

⊂ Ψr1

since, for every (λ,X) ∈ Ω, we have348

‖(λ,X)− (λ∗, X∗)‖2 ≤ ‖(λ,X)− (λ̂, X̂)‖2 + ‖(λ̂, X̂)− (λ∗, X∗)‖2

< ‖(λ0, X0)− (λ̂, X̂)‖2 + r2

≤ ‖(λ0, X0)− (λ∗, X∗)‖2 + ‖(λ∗, X∗)− (λ̂, X̂)‖2 + r2

< r2 + r2 + r2 = r1
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By Lemma 5.1, for every (λ0, X0) ∈ Ψ, the Gauss-Newton iteration on the equation349

g(Â, λ,X) = 0 converges to (λ̂, X̂). This local minimum point (λ̂, X̂) is unique in Ψ350

because, assuming there is another minimum point (λ̌, X̌) ∈ Ψ of ‖g(Â, λ,X)‖2, the351

Gauss-Newton iteration converges to (λ̂, X̂) from the initial point (λ̌, X̌). On the other352

hand, the Gauss-Newton iteration from the local minimum point (λ̌, X̌) must stay at353

(λ̌, X̌), implying (λ̌, X̌) = (λ̂, X̂).354

On the Lipschitz continuity of the pseudo-eigenvalue, let Ã, Ǎ ∈ Φ with minimum points355

(λ̃, X̃) and (λ̌, X̌) of ‖g(Ã, λ,X)‖2 and ‖g(Ǎ, λ,X)‖2 respectively in Ψ. The one-step356

Gauss-Newton iterate from (λ̃, X̃) on the equation g(Ǎ, λ,X) = 0 toward (λ̌, X̌)357

(λ1, X1) = (λ̃, X̃)− g
λX
(Ǎ, λ̃, X̃)† g(Ǎ, λ̃, X̃)

yields
∥

∥(λ1, X1)− (λ̌, X̌)
∥

∥

2
≤ µ

∥

∥(λ̃, X̃)− (λ̌, X̌)
∥

∥

2
with 0 ≤ µ < 1 by Lemma 5.1. Thus358

∥

∥(λ̌, X̌)− (λ̃, X̃)
∥

∥

2
≤

∥

∥(λ̌, X̌)− (λ1, X1)
∥

∥

2
+
∥

∥(λ1, X1)− (λ̃, X̃)
∥

∥

2

≤ µ
∥

∥(λ̌, X̌)− (λ̃, X̃)
∥

∥

2
+
∥

∥(λ1, X1)− (λ̃, X̃)
∥

∥

2

Using the identity g
λX
(Ã, λ̃, X̃)† g(Ã, λ̃, X̃) = 0 and the Lipschitz continuity of g and359

g
λX
, there is a constant γ such that360

∥

∥(λ̌, X̌)− (λ̃, X̃)
∥

∥

2
≤

1

1− µ

∥

∥(λ1, X1)− (λ̃, X̃)
∥

∥

2

=
1

1− µ

∥

∥g
λX
(Ǎ, λ̃, X̃)†g(Ǎ, λ̃, X̃)− g

λX
(Ã, λ̃, X̃)†g(Ã, λ̃, X̃)

∥

∥

2

≤
1

1− µ

(

∥

∥g
λX
(Ǎ, λ̃, X̃)†

∥

∥

2

∥

∥g(Ǎ, λ̃, X̃)− g(Ã, λ̃, X̃)
∥

∥

2

+
∥

∥g
λX
(Ǎ, λ̃, X̃)† − g

λX
(Ã, λ̃, X̃)†

∥

∥

2

∥

∥g(Ã, λ̃, X̃)
∥

∥

2

)

≤ γ
∥

∥Ã− Ǎ
∥

∥

2

for all Ã, Ǎ ∈ Φ. Namely, the m×k pseudo-eigenvalue is Lipschitz continuous with respect361

to the matrix. Furthermore, by setting (Ã, λ̃, X̃) = (A, λ∗, X∗) in the above inequalities362

we have (18) because the residual
∥

∥g(A, λ∗, X∗)
∥

∥

2
= 0 Thus µ = 0 and (iii) is proved.363

For the assertion (iv), the matrix X̌ is of full column rank since X∗ is and the least squares364

solution of g(G, λ,X) = 0 is continuous, implying X̌† X̌ = I and thus E = E X̌† X̌365

leading to (Ǎ− E X̌† − λ̌I)X̌ = X̌ S. The eigenvalue λ̌ of Ǎ + E X̌† corresponds to a366

Jordan block of size at least k since S in (3) is nilpotent of rank k − 1. �367

The Pseudo-Eigenvalue Theorem establishes a rigorous and thorough regularization of the368

ill-posed problem in computing a defective eigenvalue so that the problem of computing369

a pseudo-eigenvalue enjoys unique existence and Lipschitz continuity of the solution that370

approximates the underlying defective eigenvalue with an error bound proportional to the371

data error, reaffirming the m × k condition number as a bona fide sensitivity measure372

of an eigenvalue whether it is defective or not. This regularization makes it possible to373

compute defective eigenvalues accurately using floating point arithmetic even if the matrix374

is perturbed, and we shall present such an algorithm in next section.375
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6 An algorithm for computing a defective eigenvalue376

The Pseudo-Eigenvalue Theorem sets the foundation for accurate computation of a defective377

eigenvalue even if the matrix is represented with empirical data, provided that the multi-378

plicity support can be obtained (more to that later in §8). The computation is under the379

assumptions that the given matrix A is the data representation of an underlying matrix380

possessing a defective eigenvalue and an initial estimate λ0 is close to that eigenvalue.381

Assuming the multiplicity support m×k is known, identified or estimated, we also need to382

set up the matrix parameters C ∈ Cn×m and S ∈ Ck×k, while using T ∈ Cm×k in (1).383

By Lemma 3.2, the proper C is in an open dense subset of Cn×m so that we can set C384

at random. With C available, we can then set up385

x
(0)
1 =

[

A− λ0 I

CH

]† [

0

T1:m,1

]

(19)

x
(0)
j+1 = αj

[

A− λ0 I

CH

]† [

x
(0)
j

0

]

for j = 1, . . . , k − 1 (20)

S =











0 α1

..

.
. . .

0 αk−1

0 0 · · · 0











(21)

where, for j = 1, . . . , k − 1, the scalar αj scales x
(0)
j+1 to a unit vector. Denote386

X0 =
[

x
(0)
1 , · · · ,x

(0)
k

]

. Then g(A, λ0, X0) ≈ 0 and we apply the Gauss-Newton iteration387

(13) that converges to (λ∗, X∗) assuming the initial estimate λ0 is sufficiently close to λ∗.388

When the iteration stops at the j-th step, a QR decomposition of the matrix representing389

g
λX
(A, λj, Xj) is available and thus an estimate

∥

∥g
λX
(A, λj, Xj)

†
∥

∥

2
of the m×k condition390

number can be computed by a couple of steps of inverse iteration [12] with a negligible cost.391

A pseudo-code of Algorithm PseudoEig is given in Fig. 2.392

7 Taking advantage of the Jacobian structure393

The main cost of Algorithm PseudoEig occurs at solving for the least squares solution394

(σ, Y ) ∈ C×Cn×k on the linear equation g
λX
(A, λj, Xj)(σ, Y ) = g(A, λj, Xj) where the395

partial Jacobian g
λX
(A, λj, Xj) corresponds to an (n k +mk) × (n k + 1) matrix whose396

QR decomposition may be needed. This matrix is pleasantly structured with a proper397

arrangement so that the cost of QR decomposition can be reduced substantially.398

Let X =
[

x1, · · · ,xk

]

, the image g(A, λ,X) ∈ Cn×k ×Cm×k can be arranged as399

g(A, λ,X) =









































CH xk −T1:m,k

(A− λI)xk −sk−1,k xk−1 −sk−2,k xk−2 −· · · −s1k x1

CH xk−1 −T1:m,k−1

(A− λI)xk−1 −sk−2,k−1 xk−2 −· · · −s1,k−1 x1

. . .
. . .

..

.
..
.

. . .
. . .

.

..
.
..

. . . −s12 x1

...

. . . CH x1 −T1:m,1

(A− λ I)x1









































.
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Algorithm PseudoEig

Input: matrix A, initial eigenvalue estimate λ0, multiplicity support m, k

– set C as a random n×m matrix and x
(0)
1 as in (19)

– set x
(0)
2 , · · · ,x

(0)
k by (20)

– set X0 =
[

x
(0)
1 , · · · ,x

(0)
k

]

, S as in (21) and g as in (2)

– for j = 0, 1, . . . do

∗ solve the linear system g
λX
(A, λj , Xj) (σ, Y ) = g(A, λj, Xj) for the

least squares solution (σ, Y )

∗ set λj+1 = λj − σ, Xj+1 = Xj − Y .

∗ if
∥

∥g(A, λj, Xj)
∥

∥

2
<

∥

∥g(A, λj+1, Xj+1)
∥

∥

2
then

set (λ̂, X̂) = (λj , Xj), break the loop. end if

end do

Output: eigenvalue λ̂, backward error bound
∥

∥g(A, λ̂, X̂)
∥

∥

2

∥

∥X†
∥

∥

2
, m × k

condition number
∥

∥g
λX
(A, λ̂, X̂)†

∥

∥

2

Figure 2: Algorithm PseudoEig

As a result, the partial Jacobian matrix in a blockwise upper-triangular form2.400

∂g(A, λ,X)

∂(xk, . . . ,x1, λ)
=





































CH

A− λI

O

−sk−1,k I

O

−sk−2,k I

· · ·
· · ·

O

−s1k I
0

−xk

CH

A− λI

O

−sk−2,k−1 I

· · ·
· · ·

O

−s1,k−1 I

0

−xk−1

. . .
. . .

...
...

. . .
. . .

...
...

CH

A− λI

O

−s12 I
0

−x2

CH

A− λI

0

−x1





































.

We can further assume the matrix A is already reduced to a Hessenberg form or even Schur401

form. Then402

[

CH

A− λI

]

=

























∗ ∗ · · · ∗

.

.

.

.

.

.
.
.
.

.

.

.
∗ ∗ · · · ∗

∗ · · · ∗

.
.
.

.

.

.
∗

























is nearly upper-triangular with m + 1 subdiagonal lines of nonzero entries. The QR403

decomposition of the partial Jacobian gxk···x1 λ(A, λ,X) can then be carried out by a404

sequence of standard textbook Householder transformations. It is also suitable to apply an405

iterative method for large sparse matrices particularly if A is sparse.406

2Matlab code is available at homepages.neiu.edu/∼zzeng/pseudoeig.html.
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8 Identifying the multiplicity support407

The geometric multiplicity can be identified with numerical rank-revealing. Let λ0 be an408

initial estimate of λ∗ ∈ eig(A) in Lemma 3.2 and assume409

|λ0 − λ∗| < θ < min
λ∈eig(A)\{λ∗}

∣

∣λ− λ0

∣

∣.

The geometric multiplicity of λ∗ can be computed as the numerical nullity of A − λ0I410

within the error tolerance θ defined as411

m = max
{

j
∣

∣ σn−j+1(A− λ0I) < θ} (22)

where σi(·) is the i-th largest singular value of (·). A misidentification of the geometric412

multiplicity can be detected. Underestimating m results in an undersized C in (2) so that413

both
[

A− λ∗I
CH

]

and the partial Jacobian g
λX
(A, λ∗, X∗) are rank-deficient. Overestimating414

m renders the system
[

A− λ∗I
CH

]

u =

[

0

T1:m,1

]

inconsistent with a large residual norm.415

During an iteration in which (λj , Xj) approaches (λ∗, X∗), a large condition number of416

the partial Jacobian g
λX
(A, λj, Xj) indicates a likely underestimated geometric multiplicity417

and a large residual
∥

∥g(A, λj, Xj)
∥

∥

2
suggests a possible overestimation.418

If the geometric multiplicity is identified, it is possible to find the Segre anchor by a searching419

scheme based on the condition number of the Jacobian g
λX
(A, λj , Xj) as shown in the420

following example.421

Example 1 Let422

A =





































































0 4 0 −4 0 −2 1 0 0 −1 −1 −1 −1 2 1 0 0 −1 0 0
0 3 3 −4 1 0 4 1 −1 −1 0 0 0 0 0 −2 0 0 −1 −1
1 −4 2 10 −3 1 −7 −2 −1 3 2 0 0 −1 0 3 −1 1 1 2

−1 −1 2 5 −2 −1 −5 −1 −1 2 0 −1 0 1 0 2 −1 −1 −1 1
−1 −2 2 1 1 1 −1 0 −2 1 0 0 0 1 0 0 −1 −1 0 0
1 4 1 −12 4 2 13 3 0 −4 0 0 −2 −1 1 −6 1 1 0 −3

−1 −1 1 5 −2 0 −4 −2 0 1 −1 0 0 1 0 4 0 −1 −1 2
1 2 −4 0 1 0 1 1 4 −2 −1 1 0 −1 0 1 2 1 0 1
0 −5 2 10 −5 −1 −10 −2 −1 6 3 −2 0 0 0 3 −3 0 1 2
1 1 1 −1 2 2 4 0 1 −1 −1 2 0 −1 0 0 2 1 −1 0
1 −1 0 2 1 2 1 0 1 −1 3 2 0 −1 0 0 1 1 −1 0

−1 −3 0 5 −1 2 −4 −1 0 1 −1 4 4 1 −2 2 0 −1 0 1
−2 0 0 −1 0 0 0 0 0 0 −1 0 3 2 0 0 0 −1 0 0
−3 4 −1 −4 0 −2 1 0 0 −1 −1 −1 −2 5 2 0 0 −1 1 0
−2 0 0 −1 0 0 0 0 0 0 −1 0 0 2 3 0 0 −1 0 0
0 0 −2 3 1 2 −1 −1 2 −2 −2 2 0 0 0 5 2 0 0 1
6 3 −6 3 6 4 7 0 7 −7 1 5 −2 −6 1 0 8 6 −1 0
0 2 −4 −4 1 −1 4 1 0 −1 0 −1 −1 0 1 −2 0 3 4 −1
1 −4 −1 11 −4 1 −8 −3 −1 3 2 0 0 −1 0 4 −1 1 4 3
0 0 −1 1 −2 0 −1 −2 1 0 0 0 0 0 0 1 0 0 0 4





































































with eig(A) = {2, 3} of nonzero Segre characteristics {4, 3, 3} and {5, 5} respectively.423

Applying the Francis QR algorithm implemented in Matlab yields computed eigenvalues424

scattered around λ1 = 2.0 and λ2 = 3.0:425

2.000118556521482 + 0.000118397929590i 3.000398490901253 + 0.001224915665189i
2.000118556521482 − 0.000118397929590i 3.000398490901253 − 0.001224915665189i
1.999881443477439 + 0.000118714860725i 3.000646066870935 + 0.000469627646058i
1.999881443477439 − 0.000118714860725i 3.000646066870935 − 0.000469627646058i
2.000013778528383 + 0.000018105742295i 3.001287762162967 + 0.000000000000000i
2.000013778528383 − 0.000018105742295i 2.999753002133234 + 0.000759191914332i
2.000008786021464 + 0.000020979720849i 2.999753002133234 − 0.000759191914332i
2.000008786021464 − 0.000020979720849i 2.998957628017279 + 0.000757681758834i
1.999977435451235 + 0.000002873978888i 2.998957628017279 − 0.000757681758834i
1.999977435451235 − 0.000002873978888i 2.999201861991639 + 0.000000000000000i
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Using two computed eigenvalues above, say426

λ̃0 = 1.999881443477439 - 0.000118714860725i and λ̂0 = 3.001287762162967 + 0.000000000000000i

as initial estimates of the defective eigenvalues, smallest singular values of A − λ̃0I and427

A− λ̂0I can be computed using a rank-revealing method as428

σj(A − λ̃0I) : σj(A − λ̂0I) :
· · · · · ·

0.084065699924186 0.070046163725993
0.049368630759014 0.054661269198836

0.000000000003635 0.036234932328447
0.000000000000280 0.000000000000001

0.000000000000001 0.000000000000000

indicating the geometric multiplicities 3 and 2 respectively.429

Set the geometric multiplicities for the initial eigenvalue estimate λ̃0 and λ̂0 as 3 and430

2 respectively. Applying Algorithm PseudoEig with increasing input k = 1, 2, . . . , as431

estimated Segre anchors, we list the computed eigenvalues, m× k condition numbers and432

residual norms in Table 1. At λ1, for instance, underestimated values k = 1, 2 render433

the m × k condition numbers as large as 108 and the residuals to be tiny, while the434

overestimated value k = 4 leads to a drastic increase of residual from 10−16 to 10−3 but435

maintains the moderate m × k condition number, as shown in Table 1. Similar effect of436

increasing estimated values of the Segre anchor at λ2 can be observed consistently. �437

test at λ1 = 2, Segre anchor k = 3
k value computed eigenvalue condition number residual norm

k = 1 1.999881443477439 - 0.000118714860725i 560995239.6 0.000000000000001

k = 2 1.999999993438010 - 0.000000011324234i 147603979.2 0.000000000000001

→ k = 3 2.000000000000000 - 0.000000000000000i 58.7 0.0000000000000006 ←
k = 4 2.109885640097783 - 0.004348977611146i 24.1 0.007

test at λ2 = 3, Segre anchor k = 5
k value computed eigenvalue condition number residual norm

k = 1 3.001287762162967 2161090332264.6 0.000000000000003

k = 2 3.001287762162967 7962600062.8 0.0000000000005

k = 3 3.001287762162967 4556940.4 0.000000003

k = 4 3.000000013572103 687859583.9 0.0000000000000007

→ k = 5 3.000000000000000 33.9 0.0000000000000007 ←
k = 6 3.002451613695432 34.1 0.007

Table 1: Effect of increasing estimated Segre anchors: Underestimated values yield large condition
numbers of the Jacobian and overestimated values lead to large residual norms. The results using
the correct anchors are pointed out with arrows.

Identify multiplicity support in practical computation can be challenging. It is certainly a438

subject that is worth further studies.439

9 Improving accuracy with orthonormalization440

Algorithm PseudoEig uses a simple nilpotent matrix S with only one superdiagonal line441

of nonzero entries. By Lemma 3.2 (iii), we can modify C and S as parameters of g442

17



so that the matrix component X̌ of the solution to g(A, λ∗, X̌) = 0 has orthonormal443

columns. The orthonormalization can be carried out by the following process:444

− Execute Algorithm PseudoEig and obtain output λ̂, X̂, C, S.445

− Normalize X̂1:n,1 and adjust s12 so that (A− λ̂I) X̂ ≈ X̂ S still holds.446

− Reset C1:n,1 as X̂1:n,1.447

− Reset X̂1:n,2:k as X̂1:n,2:k − X̂1:n,1 (X̂1:n,1)
HX̂1:n,2:k.448

− Reset S1,1:k as S1,1:k + (X̂1:n,1)
HX̂1:n,2:k S2:k,1:k.449

− Obtain the thin QR decomposition X̂ = QR.450

− Reset S as RS R−1 in the mapping g.451

− Set the initial iterate (λ0, X0) = (λ̂, Q) for the Gauss-Newton iteration (13).452

The advantage of such an orthonormalization is intuitively clear. When we solve for the453

least squares solution (λ̃, X̃) of the equation g(A, λ,X) = 0 minimizing the magnitude454

of the residual (A − λ̃ I)X̃ − X̃ S = E, the backward error given in Theorem 5.2 (iv) is455

‖E‖2
∥

∥X̃†
∥

∥

2
. When the norm ‖X̃†‖2 is large, minimizing the residual norm ‖E‖2 may not456

achieve the highest attainable backward accuracy. If the columns of X̃ are orthonormal,457

however, the norm ‖X̃†‖2 = 1 and the least squares solution that minimizing the residual458

norm ‖E‖2 directly minimizes the backward error bound.459

Example 2 Consider the matrix460

A =











2 1
−8 1

2 1
2 1

−10000 1000 −100 12











(23)

with an exact eigenvalue λ∗ = 2 and the multiplicity support 1 × 5. A straightforward461

application of Algorithm PseudoEig in Matlab yields462

λ̃ = 1.999999999999748

S =











0 0.100686223197184 0 0 0
0 0 0.680272615629152 0 0
0 0 0 0.786924421181882 0
0 0 0 0 0.922632632948520
0 0 0 0 0











X̃ =











1.00502786434024 0.10210319200724 .07627239342106 .06542640851275 .06584192219606
−0.00000000000025 0.10119245986833 .06945800549083 .06002060904501 .06036453955047
−0.00000000000253 1.01192459868319 .76341851426484 .65486429121738 .65902236805904
−0.00000000000000 −0.00000000000051 .68838459356550 .60075267245722 .60419916522969
−0.00000000000000 −0.00000000000000 −.00000000000052 .54170664784191 .55427401993992











The residual norm463
∥

∥(A− λ̃I) X̃ − X̃ S
∥

∥

F
≈ 4.5× 10−14

can not be minimized further with the unit round-off about 10−16 considering ‖A‖2 ≈ 104.464

The backward error465

∥

∥(A− λ̃I) X̃ − X̃ S
∥

∥

F

∥

∥X̃†
∥

∥

2
≈ 1.3× 10−9
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is not small enough. After orthonormalization and resetting the resulting parameter C466

and S in g in (2), we apply the Gauss-Newton iteration again and obtain467

λ̂ = 2.000000000000000

S =











0 0.09950371902 −0.00990049999 0.00099000050 −0.99498744208
0 0 1.00493781395 −0.00098508732 0.99004950866
0 0 0 1.00004900870 −0.09850873917
0 0 0 0 10050.38307728113
0 0 0 0 0











X̂ =











−1.0 −0.000000000002531 −0.000000000000000 −0.000000000000000 −0.000000000000000
0.0 −0.099503719021067 0.009900499987341 −0.000990000499944 0.994987442082474
0.0 −0.995037190210673 −0.000990049999192 0.000099000049994 −0.099498744209908
0.0 −0.000000000000000 −0.999950498725976 −0.000009900005712 0.009949874421338
0.0 −0.000000000000000 −0.000000000000000 −0.999999505000536 −0.000994987010945











The residual practically stays about the same magnitude468

∥

∥(A− λ̂I) X̂ − X̂ S
∥

∥

F
≈ 1.25× 10−14

but the backward error improves substantially to469

∥

∥(A− λ̂I) X̂ − X̂ S‖F
∥

∥X̂†
∥

∥

2
≈ 1.25× 10−14

as ‖X̂†‖2 ≈ 1. More importantly, the forward accuracy of the computed eigenvalue improves470

by 3 additional accurate digits. �471

When the given matrix represents perturbed data, the orthonormalization seems to be more472

significant in improving the accuracy, as shown in the example below.473

Example 3 Using a random perturbation of magnitude about 10−5, let474

Ã = A+ 10−5











−0.092 −0.653 −0.201 −0.416 −0.787
−0.135 −0.218 0.054 −0.136 −0.255
0.651 0.663 −0.166 −0.969 −0.603

−0.833 0.607 0.314 0.969 −0.020
−0.733 −0.879 0.256 −0.665 −0.321











(24)

be the data representation of the matrix A in (23). Table 2 lists the computed eigenvalues,475

residual norms, backward errors and forward errors before and after orthonormalization.476

The results show a substantial improvement on the both forward and backward errors even477

though the residual magnitudes roughly stay the same. �478

before orthonormalization after orthonormalization
computed eigenvalue 2.004413315474177 2.000000343999377

residual norm 2.3× 10−6 2.9× 10−6

backward error 6.7× 10−2 2.9× 10−6

forward error 4.4× 10−3 3.4× 10−7

Table 2: Comparison between computing results with or without orthonormalization of the
X component of the least squares solution to g(Ã, λ,X) = 0 for the matrix Ã in (24) at
the eigenvalue λ = 2. Correct digits of computed eigenvalues are highlighted in boldface.
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10 What kind of eigenvalues are ill-conditioned, and479

in what sense?480

The well documented claim that a defective eigenvalue is infinitely sensitive to perturbations481

requires an oft-missing clarification: Its unbounded sensitivity is with respect to arbitrary482

perturbations. The sensitivity of a defective eigenvalue is finitely bounded by the spectral483

projector norm divided by the multiplicity if the perturbation is constrained to maintain484

the multiplicity, or by the multiplicity support condition number if the multiplicity support485

remains unchanged.486

Furthermore, the above sensitivity assertions and clarifications are applicable on the prob-487

lem of finding eigenvalues in its strictly narrow sense. In the sense of computing a multiple488

eigenvalue via a cluster mean provided that the cluster can be grouped correctly, the sensi-489

tivity is still bounded by spectral projector norm divided by the multiplicity. The problem490

of finding a defective eigenvalue in the sense of computing a pseudo-eigenvalue elaborated491

in this paper also enjoys a finitely bounded sensitivity in terms of the multiplicity support492

condition number.493

Of course, the problem can still be ill-conditioned even if the sensitivity is bounded. In494

the following example, the matrix A has an eigenvalue of multiplicity 7 and the spectral495

projector norm is large, so the eigenvalue is ill-conditioned in this sense. On the other hand,496

the same eigenvalue is well-conditioned in multiplicity support sensitivity. Interestingly,497

this is not a contradiction at all. The conflicting sensitivity measures imply that the cluster498

mean is not accurate for approximating the eigenvalue but the pseudo-eigenvalue is, and499

Algorithm PsedoEig converges to the defective eigenvalue with all the digits correct.500

Example 4 A simple eigenvalue λ1 = 2.001 and a defective eigenvalue λ2 = 2 with the501

Segre characteristic {5, 2, 0, . . .}, i.e. multiplicity support 2× 2, exist for502

A =























3.006 2 1.005 −1.001 −0.002 −0.001 −0.001 −1
5 2 5 −1 −2 −1 −1 0

−5.006 −3 −3.005 2.001 3.002 2.001 0.001 2
−6 −1 −6 3 5 3 0 1
−5 −1 −5 1 6 3 0 1
1 0 1 0 −1 1 0 0
−4 −2 −4 1 3 2 2 2
5 0 5 −1 −2 −1 −1 2























.

Let P2 be the spectral projector associated with λ2 = 2. The defective eigenvalue λ2503

is both highly ill-conditioned in spectral projector norm and almost perfectly conditioned504

measured by its 2× 2 condition number with a sharp contrast:505

1
m
‖P2‖2 ≈ 4.05× 1014 while τA,2×2(λ2) ≤ 19.95.

This may seem to be a contradiction except it is not. Both conditions accurately measure506

the sensitivities of same end (finding the defective eigenvalue) through different means (clus-507

ter mean versas pseudo-eigenvalue). The Francis QR algorithm implemented in Matlab508

produces computed eigenvalues509

2.003667055821394, 2.001912473859015 + 0.002992156370408i,510

1.996674198110247, 2.001912473859015 - 0.002992156370408i,511

2.000000046670435, 1.998416899175164 + 0.002994143122392i,512

1.999999953329568, 1.998416899175164 - 0.002994143122392i.513
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There is no apparent way to group 7 computed eigenvalues to use the cluster mean for the514

defective eigenvalue even if we know the multiplicity is 7. Out of all 8 possible groups of515

7 eigenvalues, the best approximation to λ2 = 2.0 by the average is 2.000142850475652516

with a substantial error 1.4× 10−4 predicted by the spectral projector norm. In contrast,517

Algorithm PseudoEig accurately converges to λ2 = 2.0 with an error below the unit round518

off 2.2 × 10−16 using the correct multiplicity support 2 × 2 that can easily be identified519

using the method in §8, as accurately predicted by the 2× 2 condition number.520

This seemingly contradicting sensitivities can be explained by the fact that there are infinitely521

many matrices nearby possessing a single eigenvalue of nonzero Segre characteristic {6, 2}522

within 2-norm distances of 5.2 × 10−5. Namely, such a small perturbation increases the523

multiplicity from 7 to 8 but can not increase the multiplicity support 2 × 2. Using the524

publicly available Matlab functionality NumericalJordanForm on the matrix A with525

error tolerance 10−5 in the software packageNAClab3 for numerical algebraic computation,526

we obtain approximately nearest matrix B with a single eigenvalue associated with Jordan527

blocks sizes 6 and 2 with first 14 digits of its entries given as528

3.0059955942886 1.9999978851470 1.0049959180573 -1.0010020728471 -0.0020046893569 -0.0010002300301 -0.0010132897111 -0.9999977586058529

4.9999998736434 1.9999937661529 5.0000001193777 -1.0000000065301 -2.0000000129428 -0.9999999934070 -0.9999999926252 -0.0000169379637530

-5.0060008381014 -3.0000021146845 -3.0050076499797 2.0009979267360 3.0019953102172 2.0009997699688 0.0009867094117 2.0000022421372531

-5.9999927405774 -1.0000021677309 -6.0000074892946 2.9999962015789 4.9999997701478 2.9999999999775 -0.0000002324249 0.9999978331627532

-4.9999995930006 -0.9999961877596 -5.0000095377366 0.9999880178349 5.9999870716625 3.0000002295144 -0.0000150335883 0.9999994536709533

0.9999971940837 -0.0000010574036 1.0000006545259 -0.0000047736356 -1.0000023807994 0.9999966612522 -0.0000036987224 -0.0000054161918534

-4.0000092166543 -1.9999997569827 -3.9999765043908 1.0000142841290 3.0000142782479 2.0000000005386 2.0000249853630 2.0000002431865535

4.9999998983338 0.0000026655939 5.0000001062663 -0.9999999958672 -1.9999999894366 -1.0000000065916 -1.0000000120790 2.0000133696815536

The spectrum of B consists of a single eigenvalue λ = 2.00125. This lurking nearby matrix537

indicates that the multiplicity 7 of λ2 = 2.0 ∈ eig(A) can be increased to 8 with a small538

perturbation ‖A− B‖2, which is exactly the kind of cases where spectral projectors have539

large norms as elaborated by Kahan [10] and grouping method fails. However, those nearby540

defective matrices have the same multiplicity support 2× 2, implying a small perturbation541

does not increase either the geometric multiplicity or the Segre anchor. As a result, the542

multiplicity support condition number is benign, and computing the defective eigenvalue via543

pseudo-eigenvalue is stable.544

Interestingly, even though the matrix B is only known via the above empirical data, the545

spectral projector associated with its eigenvalue 2.00125 is known to be identity since there546

is only one distinct eigenvalue. Consequently, the mean of all approximate eigenvalues547

computed by Francis QR algorithm is 2.000124999999987 with 14 digits accuracy, same548

as the empirical data. Algorithm PseudoEig produces the 2 × 2 pseudo-eigenvalue549

2.000125000000078 with the same number of correct digits due to a small 2 × 2 condition550

number about 14.47. The software NumericalJordanForm accurately produces the551

Jordan Canonical Forms of both matrices A and B. �552
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