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Abstract Polynomial factorization in conventional sense is an ill-posed problem
due to its discontinuity with respect to coefficient perturbations, making it a chal-
lenge for numerical computation using empirical data. As a regularization, this
paper formulates the notion of numerical factorization based on the geometry of
polynomial spaces and the stratification of factorization manifolds. Furthermore,
this paper establishes the existence, uniqueness, Lipschitz continuity, condition
number, and convergence of the numerical factorization to the underlying exact
factorization, leading to a robust and efficient algorithm with a Matlab implemen-
tation capable of accurate polynomial factorizations using floating point arithmetic
even if the coefficients are perturbed.

Keywords Numerical Polynomial Factorization · Ill-posed Problem · Factoriza-
tion Manifold · Sensitivity
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1 Introduction

Polynomial factorization is one of the fundamental algebraic operations in theory
and in applications. It is also an enduring research subject in the field of computer
algebra as well as a significant success of symbolic computation (c.f. the survey
[17]). Factorization functionalities have been standard features of computer alge-
bra systems such as Maple and Mathematica with a common assumption that the
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coefficients are represented exactly. Nonetheless, theoretical advancement and al-
gorithmic development are still in early stages in many cases. When a polynomial
is approximately known with a limited accuracy in coefficients, the very meaning
of its factorization as we know it becomes a question, as illustrated in the following
example. More precisely, a well-posed notion of numerical factorization has not
been established, leaving a gap in the foundation of its computation.

Example 1 We illustrate the central question of this paper: Assume the polynomial

f = x2y+ 0.857143 xy2 + 0.833333 x2 + 1.38095 xy+ 0.571429 y2 + 0.555556 x+ 0.476190 y (1)

is given as the empirical data of a factorable polynomial f̃ . Knowing that the data are

imperfect with an error bound ‖f − f̃‖ ≤ 10−5, what is the factorization of the underlying

polynomial f̃ ?

The factorization of f in conventional sense doesn’t exist while the underlying polynomial
f̃ is factorable but not known exactly. Intuitively, one can ask a more modest question: Is
there a factorable polynomial near f within the data error bound 10−5? This latter question
is similar to an open problem in [16] and the answer is ambiguous: The polynomial f is near
many factorable polynomials, as shown in Table 1.

factorable polynomial near f distance

f̃ = (x+ 2

3
)(y + 5

6
)(x+ 6

7
y) ←− underlying polynomial 2.53× 10−6

f̂ = 0.9999994 (x+ 0.6666667)(y + 0.8333333)(x+ 0.8571429 y) 2.11× 10−6

←− the numerical factorization

f1 = 1.0000002 (y + 0.8333327)(x2 + 0.6666663 x+ 0.5714287 y + 0.8571420 xy) 1.75× 10−6

f2 = 1.0000002 (x+ 0.8571425 y)(xy + 0.8333321 x+ 0.6666661 y + 0.5555555) 1.60× 10−6

f3 = 0.9999997 (x+ 0.66666728)(xy + 0.83333331 x+ 0.7142836 y + 0.8571432 y2) 8.70× 10−7

←− the nearest factorable polynomial

Table 1 The polynomial f in (1) is near many factorable polynomials with various distances.

The numerical factorization of f within the error tolerance 10−5, as we shall define in
§5, is the exact factorization of f̂ in Table 1 and accurately approximates the factorization
of f̃ from which f is constructed by rounding up digits. The nearest polynomial to the
data f , however, is not f̂ but f3 whose factorization does not resemble that of f̃ . In
fact, the factorable polynomial with the smallest distance to the data is almost certain to have
an incorrect factorization structure by the Factorization Manifold Embedding Theorem in §4
whenever the underlying polynomial f̃ has more than two factors. �

As shown in this example, conventional factorization is a so-called ill-posed

problem for numerical computation since the factorization is discontinuous with
respect to data perturbations. Consequently, fundamental questions arise such as
if, under what conditions, by computing which factorization and to what accuracy
we can recover the factorization from empirical data. In this paper, we estab-
lish the geometry of the polynomial (topological) spaces in Factorization Manifold
Theorem and Factorization Manifold Embedding Theorem. Based on the geom-
etry we rigorously formulate the notion of the numerical factorization. We prove
the so-defined numerical factorization eliminates the ill-posedness of the conven-
tional factorization and accurately approximates the intended exact factorization
(Numerical Factorization Theorem) with a finite sensitivity measure that is conve-
niently attainable (Numerical Factorization Sensitivity Theorem). As a result, the
ill-posed factorization problem in numerical computation is completely regularized
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as a well-posed numerical factorization problem that approximates the intended
factorization with an accuracy in the same order of the data precision.

Our results can be narrated as follows. The collection of polynomials pos-
sessing a nontrivial factorization structure is a complex analytic manifold of a
positive codimension and every such manifold is embedded in the closures of cer-
tain manifolds of lower codimensions. This dimension deficit provides a singularity
measurement of polynomials on the manifold and fully explains the ill-posedness
their factorizations: An infinitesimal perturbation reduces the singularity and
pushes a polynomial away from its native manifold into the open dense subset of
polynomials with a trivial factorization structure, making the exact factorization
on the empirical data meaningless. Based on the geometric analysis, we formu-
late the notion of the numerical factorization as the exact factorization of the
polynomial on the nearby factorization manifold of the highest singularity hav-
ing the smallest distance to the data. Under the assumption that the data error
is small, the original factorization can be recovered accurately by the numerical
factorization of the data polynomial within a proper error bound even if it is per-
turbed. From the Tubular Neighborhood Theorem in differential geometry, the
numerical factorization is a well posed problem as it uniquely exists, is Lipschitz
continuous and approximates the exact factorization of the underlying polynomial
the data represent. The accuracy of the recovered factorization is in the same
order of the data accuracy since the factorization is Lipschitz continuous on that
manifold. Moreover, the conventional factorization becomes a special case of the
numerical factorization within a small error tolerance. Although a specific algo-
rithm is not proposed here, the geometric analysis naturally leads to a two-staged
computing strategy for the numerical factorization: Identifying the factorization
manifold by a squarefree factorization and a proper reducibility test, followed by
the Gauss-Newton iteration [2,6,26,30] for minimizing the distance to the factor-
ization manifold.

This paper attempts to bridge differential geometry, computer algebra and
numerical analysis. As an effective analytical tool that still appears to be under-
used, geometry has led to many penetrating insights in numerical analysis (e.g. [3,
14]) and effective algorithms such as homotopy methods based on Sard’s Theorem
and Theorem of Bertini (e.g. [1,22]). Polynomial factorization problem has been
studied from geometric perspective such as in [4,5,8]. This paper broadens the
geometric analysis into a numerical computation of a basic problem in computer
algebra by establishing the stratified complex analytic manifolds of factorization
and their tubular neighborhood. In a seminal technical report [14], Kahan is the
first to discover the hidden continuity on manifolds for generally discontinuous so-
lutions of ill-posed algebraic problems. Recent works such as [30,31] made progress
along this directions. This work provides a complete regularization of a typical
ill-posed algebraic problem in numerical polynomial factorization by establishing
its existence, uniqueness, Lipschitz continuity, convergence and condition number.
Regularizations to this extent should now be expected for other ill-posed algebraic
problems that share a similar geometry.

For exact polynomial factorization, many effective methods have been devel-
oped over the past several decades. Those algorithms and complexity analyses
have been studied extensively. The work of Sasaki Suzuki, Kolar and Sasaki [24]
introduces the techniques of extended Hensel construction and the trace recombi-
nation that lead to factorization algorithms such as van Hoeij’s trace recombina-
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tion [12] for univariate polynomial factorization of integer coefficients. The first
polynomial-time factorization algorithms is given by Lenstra, Lenstra and Lovasz
[21] for univariate polynomial factorization, and by Kaltofen and Von zur Gathen
[11,15] for multivariate polynomials. Rigorous proofs are also provided in these
works on the probabilities and the complexities. At present, the algorithm having
the lowest complexity for exact bivariate polynomial factorization appears to be
due to Lecerf [20].

Many authors made pioneer contributions to the numerical factorization prob-
lem of multivariate polynomials, such as pseudofactors by Huang, Stetter, Wu and
Zhi [13], the numerical reducibility tests by Galligo and Watt [7] and by Kaltofen
and May [18], computing zero sum relations by Sasaki [25], interpolating the ir-
reducible factors as curves by Corless, Giesbrecht, Van Heij, Kotsireas and Watt
[4], and by Corless, Galligo, Kotsireas and Watt [5]. Finding a nearby factorable
polynomial as proposed in [4,7,8,10,16,17,18] has played an indispensable role
in the advancement of numerical polynomial factorization, even though such a
backward accuracy alone is insufficient in numerical factorizations as illustrated
in Example 1. In [27], Sommese, Verschelde and Wampler developed a homotopy
continuation method along with monodromy grouping, and Verschelde released
and has maintained the first numerical factorization software as part of the PHC
package [29] for solving polynomial systems. A breakthrough due to Ruppert’s
differential forms [23] led to a novel hybrid factorization algorithm [9] by Gao, and
the development of a numerical factorization algorithm by Gao, Kaltofen, May,
Yang and Zhi in [10,19]. Based on the formulation and analysis of this paper, we
implemented a preliminary testing algorithm as a Matlab module that shares a
root similar to [9,10,19] along with several new developments for demonstration
of theories in this paper.

The results of this paper is not limited to multivariate polynomials. The
numerical factorization theory and computational strategy extend to the univariate
polynomial factorization, which is also known as polynomial root-finding where a
recent major development enables accurate computation of multiple roots without
extending the hardware precision even if the coefficients are perturbed [30]. This
paper provides a unified framework for the numerical factorization including the
univariate factorization as a special case.

2 Preliminaries

We consider polynomials in variables x1, . . . , xℓ with coefficients in the field
C of complex numbers. The ring of these polynomials is commonly denoted by
R = C[x1, . . . , xℓ]. The ℓ-tuple degree of a polynomial f is defined as a vector
deg(f) =

(

deg
x1

(f), . . . , deg
xℓ
(f)

)

where deg
xj
(f) is the degree of f in xj. For

any ℓ-tuple degree n, denote

Rn :=
{

p ∈ R
∣

∣ deg(p) ≤ n
}

Rn :=
{

p ∈ R
∣

∣ deg(p) = n
}

.

Here Rn is a vector space whose dimension is denoted by 〈n〉. Inequalities
between ℓ-tuple degrees are componentwise. With a monomial basis in lexico-
graphical order, a polynomial f = f1x

m1 + f2x
m2 + · · ·+ f〈n〉x

m〈n〉 in Rn cor-

responds to a unique coefficient vector denoted by JfK := (f1, . . . , f〈n〉) ∈ C
〈n〉,
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such as the polynomial f = 3 x21x2 − 4 x1x2 + 5 x1 + 6 ∈ R(2,1) corresponding

to JfK = (3,0,−4,5, 0,6) ∈ C
6. A subset Ω ⊂ Rm corresponds to the sub-

set JΩK =
{

JpK ∈ C
〈m〉

∣

∣ p ∈ Ω
}

in C
〈m〉. Here C

n is the vector space of
n-dimensional vectors of complex numbers. All vectors in this paper are ordered
arrays denoted by boldface lowercase letters or in the form of J·K. The Euclidean
norm in C

〈n〉 induces the polynomial norm as ‖f‖ :=
∥

∥JfK
∥

∥

2
, making Rn a

topological metric space.

There are no differences between factoring a polynomial and factoring its
nonzero constant multiple. We say p and q are equivalent, denoted by
p ∼ q, if p = αq for α ∈ C \ {0}. A metric is needed in the quotient space
C[x1, . . . , xℓ]/ ∼ but not seen in the literature. We propose a scaling-invariant
distance between polynomials p and q as the sine of the principal angle between
the subspaces span{JpK} and span{JqK}, denoted by

sin(p, q) :=











0 if p = q = 0
1 if p = 0, q 6= 0 or p 6= 0, q = 0

∥

∥

∥

p
‖p‖

− JqK·JpK
‖q‖ ‖p‖

q
‖q‖

∥

∥

∥
if p 6= 0, q 6= 0.

(2)

Here the “·” denotes the standard vector dot product. Let Pf be the projection
mappings to span{JfK} for any polynomial f . It is known that sin(p, q) ≡
‖Pp−Pq‖2 (c.f. [28]), and is thus a distance in the quotient space C[x1, . . . , xl]/ ∼.

A polynomial f is factorable if there exist nonconstant polynomials g and
h such that f = g h, otherwise it is irreducible. We say αf1 f2 · · · fk is a
factorization of f if α ∈ C is a constant scalar and the factors f1, . . . , fk ∈
C[x1, . . . , xl] so that the product αf1 · · · fk is equivalent to f . Here we abuse
the notation αf1 · · · fk as it represents either the polynomial product or the
factorization that consists of the array of factors α, f1, . . . , fk, depending on the
context.

We say two factorizations αf1 f2 · · · fk and β g1 g2 · · · gk of the same number
of factors are equivalent, denoted by αf1 f2 · · · fk ∼ β g1 g2 · · · gk, if there is a
permutation {σ1, . . . , σk} of {1, . . . , k} such that fj ∼ gσj for j = 1, . . . , k.
For two factorizations αf1 f2 · · · fk and β g1 g2 · · · gm with different number
of factors, say k < m, they are equivalent if we can append constant factors
fk+1 = · · · = fm = 1 so that αf1 f2 · · · fm ∼ β g1 g2 · · · gm. If f1, f2, · · · , fk are
all irreducible, then αf1 f2 · · · fk is an irreducible factorization. The irreducible
factorization of a polynomial is unique as an equivalence class.

A factorization γg1 · · · gm is regarded as an approximate factorization of f

if the backward error sin(f, γg1 · · · gm) is small enough and acceptable in the
underlying application. The forward error of the factorization γg1 · · · gm is the
difference between the factors g1, . . . , gm and their counterparts in f = αf1 · · · fk
via a proper metric that is needed but not properly established in the literature.
Here we extend the distance measurement sin(·, ·) to the distance between two

factorizations as

dist
(

αf1 · · · fk , γ g1 · · · gk
)

:= min
(σ1,...,σk)∈Σ

{

max
1≤j≤k

{

sin(fj , gσj )
}

}

(3)

where Σ is the collection of all permutations (σ1, . . . , σk) of (1, . . . , k). This dis-
tance extends to two factorizations with different numbers of factors by appending
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dummy constant factors. Clearly, two factorizations are equivalent if and only if
their distance is zero.

A polynomial is squarefree if its irreducible factorization consists of pairwise
coprime factors. A squarefree factorization αfk1

1 · · · fkr
r consists of squarefree

polynomials f1, . . . , fr as components that are pairwise coprime but may or may
not be irreducible. Again, we use the notation αfk1

1 fk2

2 · · · fkr
r to represent either

the polynomial that equals to the result of the polynomial multiplication or the
factorization consists of the factors α, f1, . . . , f1, f2, . . . , f2, . . . , fr, . . . , fr where
each fj repeats kj times for j = 1, . . . , r.

If αfk1

1 · · · fkr
r is an irreducible squarefree factorization of a polynomial f

with degree m, we shall use M = mk1

1 · · ·mkr
r to denote the factorization

structure, or simply the structure of f , where mj = deg(fj) 6= 0, kj ≥ 1 for
j = 1, . . . , r and k1m1 + · · ·+ krmr = m = deg(f). We shall also say such an M

is one of the factorization structures of the degree m and denote deg(M) = m.

Any permutation of mk1

1 , . . . ,mkr
r in M = mk1

1 · · ·mkr
r is considered the same

structure.
There are two cases for a factorization structure M to be called trivial when

M is the factorization structure of either an irreducible polynomial or a univariate
polynomial with no multiple roots. A factorization structure is nontrivial if it is
not trivial.

3 Factorization Manifolds

The factorization of a polynomial f is an equivalence class in which a specific
representative αfk1

1 · · · fkr
r can be extracted using a set of auxiliary equations

b1 · Jf1K = · · · = br · JfrK = 1

where b1, . . . ,br are unit vectors of proper dimensions. We call such vectors
b1, . . . ,br the scaling vectors. Scaling vectors can be chosen randomly. A more
natural choice during computation is the normalized initial approximation of JfiK

so that bi · JfiK ≈ ‖fi‖2 = 1 for i = 1, . . . , r. For any factorizations γpk1

1 · · · pkr
r

and µqk1

1 · · · qkr
r scaled by equations bi · JpiK = bi · JqiK = 1 for i = 1, . . . , r, it

is clear that ‖p1‖, . . . , ‖pr‖, ‖q1‖, . . . , ‖qr‖ ≥ 1 since the scaling vectors are of unit
norms, and the following lemma applies.

Lemma 1 Let γpk1

1 · · · pkr
r and µqk1

1 · · · qkr
r be two factorizations with components

satisfying ‖pi‖, ‖qi‖ ≥ 1 for i = 1, . . . , r. Then

dist
(

γpk1

1 · · · pkr
r , µqk1

1 · · · qkr
r

)

≤ max
1≤i≤r

∥

∥pi − qi
∥

∥. (4)

Proof. It is straightforward to verify that sin(pi, qi) ≤ ‖pi − qi‖ whenever
‖pi‖, ‖qi‖ ≥ 1 for i = 1, . . . , r. Thus (4) holds. �

Suppose f possesses an irreducible squarefree factorization αfk1

1 · · · fkr
r and

the degrees deg(fi) = mi for i = 1, . . . , r. The factorization structure M equals

to mk1

1 · · ·mkr
r . All the polynomials sharing this factorization structure form a

subset

FM :=
{

f ∈ Rm

∣

∣ f = αgk1

1 · · · gkr
r where α ∈ C, gj ∈ Rmj , j = 1, . . . , r

are irreducible and pairwise coprime
}
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of Rm where m = deg(M). For almost all unit scaling vectors bi ∈ C
〈mi〉 for

i = 1, . . . , r, a polynomial f ∈ FM possesses irreducible factors α, f1, . . . , fr
such that αfk1

1 · · · fkr
r = f and b1 · Jf1K = · · · = br · JfrK = 1 so that the array

(

γ, Jp1K, . . . , JprK
)

=
(

α, Jf1K, . . . , JfrK
)

is a solution to the equation

φ
(

γ, Jp1K, . . . , JprK
)

=
(

JfK, 1, . . . , 1
)

(5)

for γ ∈ C, pj ∈ Rmj , j = 1, . . . , r, where the mapping φ is defined by

φ : C× C
〈m1〉 × · · · × C

〈mr〉 −→ C
〈m〉 × C× · · · ×C

(

γ, Jp1K, . . . , JprK
)

7−→
(

Jγpk1

1 · · · pkr
r K, b1 · Jp1K, . . . , br · JprK

)

.
(6)

Let qi = (ki

pi
)αpk1

1 · · · pkr
r . Then the Jacobian of φ can be written as

J (α, Jp1K, . . . , JprK) =














column(Jpk1

1 · · · pkr
r K) Cm1

(q1) Cm2
(q2) · · · Cmr (qr)

column(b1)
H

column(b2)
H

. . .

column(br)
H















(7)

where column(·) represents the column block generated by a vector (·), the
notation (·)H denotes the Hermitian transpose of the matrix (·), and Cmi(qi)
is the convolution matrix [30] associated with qi so that Cmi(qi) · JhK = JqihK

holds for any h ∈ Rmi , i = 1, . . . , r. We need several lemmas for establishing the
main theorems of the paper.

Lemma 2 For α ∈ C \ {0}, bj ∈ C
〈mj〉 and pj ∈ Rmj with bj · JpjK 6= 0 for

j = 1, . . . , r, the Jacobian in (7) is injective if and only if p1, . . . , pr are pairwise

coprime.

Proof. Assume p1, . . . , pr are pairwise coprime and the matrix-vector mul-
tiplication

J (α, Jp1K, . . . , JprK) · (−a, Jv1K, . . . , JvrK ) = 0. (8)

Then b1 · Jv1K = · · · = br · JvrK = 0 as well as
∑r

i=1 qivi = a
∏r

i=1 p
ki

i that lead
to

∑r
i=1 kiαp1 · · · pi−1vipi+1 · · · pr = ap1p2 · · · pr. Thus

k1 αv1 p2 · · · pr = a p1 p2 · · · pr −
r

∑

i=2

ki α p1 · · · pi−1 vi pi+1 · · · pr

that contains the factor p1. Because gcd (p1, pj) = 1 for j = 2, . . . , r, there is
a polynomial s such that v1 = sp1. The degree deg(v1) ≤ deg(p1) leads to s

being a constant. Since b1 · Jp1K 6= 0, 0 = b1 · Jv1K = sb1 · Jp1K, hence s = 0.
Consequently v1 = 0. Similarly we can prove that vi = 0 for i = 2, . . . , r.
Substituting v1 = · · · = vr = 0 into (8), we have apk1

1 · · · pkr
r = 0 and thus a = 0.

Therefore, the Jacobian is injective.
Conversely, to prove that the injectivity of the Jacobian in (7) implies p1, . . . , pr

are pairwise coprime, assume there are some i 6= j such that gcd (pi, pj) 6= 1.
Then we shall prove that the Jacobian must be rank-deficient. Without loss of
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generality, we can assume p1 = e s and p2 = e t for some polynomials e, s

and t where e = gcd (p1, p2) is nonconstant. Then there are three possible
cases. As case one, if b1 · JsK = 0 and b2 · JtK = 0, then it is easy to show that
(

0, 1
k1

JsK, −1
k2

JtK, 0, . . . ,0
)

is a nonzero solution to (8). As case two, if b1 · JsK =
c 6= 0 and b2 · JtK = 0, then we can consider w = c

β1

e s−s, where β1 = b1 · Jp1K.
It is straightforward to verify that

b1 · JwK =
c

β1
b1 · Jp1K − b1 · JsK = c− c = 0.

Since e = gcd (p1, p2) which is nontrivial, we have deg(ces) > deg(s) and conse-
quently w 6= 0. Thus

(

−c
β1
α, 1

k1
JwK, 1

k2
JtK, 0, . . . ,0

)

is a nonzero solution of (8).
For the third case where b1·JsK = c 6= 0 and b2·JtK = d 6= 0, let v1 = c

β1
e s−s and

v2 = − d
β2
e t+ t where β2 = b2 · Jp2K. Then

(

dα
β2

− cα
β1
, 1
k1

Jv1K,
1
k2

Jv2K, 0, . . . ,0
)

is

a nonzero solution of (8). Therefore, the Jacobian is a rank-deficient matrix. �

Lemma 3 Let M = mk1

1 · · ·mkr
r be a factorization structure of degree m and

assume a sequence {pj}∞j=1 ⊂ FM converges to q ∈ Rm. Then there is a subsequence

of {pj}∞j=1 whose irreducible factorizations converge to a factorization αqk1

1 · · · qkr
r

of q with deg(qi) = mi for i = 1, . . . , r. Further assume q ∈ FM. Then the

irreducible factorizations of {pj}∞j=1 converge to the irreducible factorization of q.

Proof. Let Si =
{

JfK
∣

∣ f ∈ Rmi
, ‖f‖ = 1

}

and pj = αjp
k1

j1 · · · p
kr

jr be an
irreducible factorization of pj , where pji ∈ Si for i ∈ {1, . . . , r} and j = 1,2, . . ..
Denote

Pj = (αj , Jpj1K, . . . , JpjrK) ∈ C×S1 × · · · ×Sr.

There is a subsequence {j1, j2, . . .} of {1, 2, . . .} such that lim
σ→∞

‖pjσi − qi‖ = 0

for i ∈ {1, . . . , r} since Si’s are compact. As a result, the subsequence
{

αjσ

}

converges to certain α ∈ C. Namely, the subsequence {Pjσ}∞σ=1 converges to

a point (α, Jq1K, . . . , JqrK) such that q = αqk1

1 · · · qkr
r and deg(qi) ≤ mi for

i = 1, . . . , r. From deg(q) = m we have deg(qi) = mi for i = 1, . . . , r. By
Lemma 1, the irreducible factorizations of pjσ for σ = 1, 2, . . . converge to the

factorization αqk1

1 · · · qkr
r since

dist(αjσp
k1

jσ 1 · · · p
kr

jσ r, αq
k1

1 · · · qkr
r ) ≤ max

i
‖pjσ i − qi‖ −→ 0

when σ → ∞. Moreover, if q ∈ FM, then αqk1

1 · · · qkr
r is an irreducible

squarefree factorization of q by the uniqueness of factorizations. Furthermore,
the irreducible squarefree factorizations of the whole sequence {pj} must converge

to the factorization αqk1

1 · · · qkr
r since otherwise there would be a δ > 0 and a

subsequence of {Pj}∞j=1 converging to (α̂, q̂1, . . . , q̂r), with q = α̂q̂k1

1 · · · q̂kr
r and

dist
(

α̂q̂k1

1 · · · q̂kr
r , αqk1

1 · · · qkr
r

)

≥ δ, contradicting the uniqueness of the factorization
of q. �

Lemma 3 directly leads to the following corollaries.

Corollary 1 Let f be a polynomial with a factorization structure M = mk1

1 · · ·mkr
r

of degree m and an irreducible squarefree factorization αfk1

1 · · · fkr
r whose compo-

nents satisfies ‖f1‖ = · · · = ‖fr‖ = 1. For any ǫ > 0, there is a neighborhood Ωf
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of f in Rm such that every g ∈ Ωf ∩FM corresponds to a unique (β, g1, . . . , gr)

with g = βgk1

1 · · · gkr
r , Jf1K · Jg1K = · · · = JfrK · JgrK = 1 and

√

|α− β|2 + ‖f1 − g1‖2 + · · ·+ ‖fr − gr‖2 < ǫ.

Proof. For any δ > 0, Lemma 3 implies that there is a neighborhood Ωf,δ

of f in Rm such that the irreducible squarefree factorization βgk1

1 · · · gkr
r of

every g ∈ Ωf,δ ∩ FM satisfies dist
(

βgk1

1 · · · gkr
r , αfk1

1 · · · fkr
r

)

< δ. We can assume
δ < 1

2 mini6=j{sin(fi, fj)} and maxj {sin(fj , gj)} < δ. Since i 6= j implies

sin(fi, gj) ≥ sin(fi, fj)− sin(fj , gj) > δ,

no the other permutations of g1, . . . , gr satisfy maxj{sin(fj , gj)} < δ. Further
assume g1, . . . , gr are the unique representatives in their respective equivalence
classes satisfying JfjK · JgjK = 1 for j = 1, . . . , r. Then

JfjK · Jfj − gjK = 0, ‖fj − gj‖ = ‖gj‖ sin(fj , gj) and

‖gj‖2 = ‖fj‖2 + ‖fj − gj‖2 = 1+ ‖gj‖2 sin2(fj , gj),

leading to

‖fj − gj‖ =
sin(fj , gj)

√

1− sin2(fj , gj)
<

δ√
1− δ2

for j = 1, . . . , r. Therefore, for any ǫ > 0, the assertion holds when δ is small.
�

Corollary 2 Polynomials of degree m with a trivial factorization structure form an

open subset of Rm.

Proof. For a univariate degree m, the assertion follows from the continuity of
polynomial roots with respect to the coefficients. Assume m is multivariate and
the assertion does not hold. Then there is an irreducible polynomial f of degree
m and a sequence of factorable polynomials {pj}∞j=1 approaching f . Because
there are finitely many factorization structures in Rm, there exists a nontrivial
factorization structure M and a subsequence {pjσ}∞σ=1 in FM. By Lemma 3, the
irreducible factorizations of this subsequence converge to a nontrivial factorization
of f , contradicting the irreducibility of f . �

We can now establish the following Factorization Manifold Theorem. A subset
S in the topological space Rm is a complex analytic manifold of dimension k

in Rm if, for every p ∈ S, there exists an open subset Ω of Rm containing
p and a biholomorphic mapping from JS ∩ ΩK ⊂ C

〈m〉 onto an open subset
of C

k. The codimension, namely the dimension deficit, of S is denoted by
codim(S) := dim(Rm)− dim(S) = 〈m〉 − k. The Factorization Manifold Theorem is
at core of the geometry on the polynomial factorization. This result and the proof
are fundamental but not seen in the literature.

Theorem 3 (Factorization Manifold Theorem) Let M = mk1

1 · · ·mkr
r be a

factorization structure with deg
(

M
)

= m. Then FM is a complex analytic manifold

in Rd and

codim(FM) = 〈m〉 −
(

〈m1〉+ · · ·+ 〈mr〉+ 1− r
)

. (9)
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Proof. Let f ∈ FM with an irreducible squarefree factorization αfk1

1 · · · fkr
r

along with deg(fj) = mj , ‖fj‖ = 1 and bj = JfjK for j = 1, . . . , r so that (6)

defines a holomorphic mapping φ : C
k → C

〈m〉+r with k = 1+〈m1〉+ · · ·+〈mr〉
and

φ
(

α, Jf1K, . . . , JfrK
)

=
(

JfK, 1, . . . , 1
)

.

By Corollary 2, there is a neighborhood ∆ of
(

α, Jf1K, . . . , JfrK
)

in the space

C × C
〈m1〉 × · · · × C

〈mr〉 and every
(

α̃, Jf̃1K, . . . , Jf̃rK
)

∈ ∆ forms an irreducible

squarefree factorization α̃f̃k1

1 · · · f̃kr
r . By Lemma 2, the Jacobian of φ is of full

rank k at (α, Jf1K, . . . , JfrK). As a result, the Inverse Mapping Theorem ensures
that certain k components of φ form a biholomorphic mapping φ̌ from an open
neighborhood Σ of

(

α, Jf1K, . . . , JfrK
)

in C
k to an open subset Π of C

k. We
can assume Σ ⊂ ∆.

The mapping φ̌ must contain the last r components of φ since φ̌ would
not be injective without those scaling constraints. Without loss of generality, we
assume φ̌ consists of the last k components of φ and we split φ(x) into
φ̂(x) = u, and φ̌(x) =

(

v, w
)

where u ∈ C
〈m〉+r−k, v ∈ C

k−r and w ∈ C
r.

Let
Π̌ =

{

v ∈ C
k−r

∣

∣

(

v, 1, . . . , 1
)

∈ Π
}

which is open in C
k−r. Then the holomorphic mapping

µ : Π̌ −→ C
〈m〉

v 7−→
(

φ̂ ◦ φ̌−1(v, 1, . . . , 1), v
)

maps Π̃ to µ(Π̃) ⊂ FM since Π̃ × {(1, . . . , 1)} ⊂ Π̌ and Σ ⊂ ∆. Define the
projection

ψ : C
〈m〉+r−k × Π̌ −→ Π̌

(u,v) 7−→ v.

By Corollary 1, there is an open neighborhood Ω ⊂ C
〈m〉−k+r×Π̌ of JfK in C

〈m〉

such that every JpK ∈ Ω ∩ JFMK corresponds to a unique (γ, Jp1K, . . . , JprK) ∈ Σ

with φ(γ, Jp1K, . . . , JprK) =
(

JpK, 1, . . . , 1
)

, namely µ ◦ ψ(JpK) = JpK. Define

Π̃ = ψ(Ω ∩ JFMK).

We have µ(Π̃) ⊃ Ω ∩ JFMK). Then for every v ∈ Π̃, there is a u ∈ C
〈m〉+r−k

such that (u,v) ∈ Ω∩ JFMK corresponds to a unique (γ, Jp1K, . . . , JprK) ∈ Σ with
φ(γ, Jp1K, . . . , JprK) = (u,v, 1, . . . , 1), implying

u = φ̂ ◦ φ̌−1(v, 1, . . . , 1) and µ(v) = (u,v).

Namely µ(Π̃) ⊂ Ω ∩ JFMK and thus µ(Π̃) = Ω ∩ JFMK. Since Ω is open and µ

is continuous, hence µ−1(Ω) = µ−1(Ω ∩ FM) = Π̃ is open in C
k−r . Therefore,

ψ is biholomorphic from Ω ∩ JFMK onto Π̃ with the inverse µ. Namely FM

is a complex analytic manifold of dimension k − r, and (9) follows. �

We shall refer to FM as the factorization manifold associated with the
factorization structure M. Its dimension deficit indicates how ill-posed the fac-
torization is for polynomials on the manifold. For a polynomial p of degree m,
we say the singularity of p and its factorization structure M is k if FM is
of codimension k in Rm. A polynomial is singular in terms of factorization if
its singularity is positive, or nonsingular otherwise.
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Corollary 4 A polynomial is singular if and only if its factorization structure is

nontrivial, and nonsingular polynomials of degree m form an open dense subset of

Rm.

Proof. For both type of trivial factorization structures, the corresponding
factorization manifold has a singularity zero from (9) by a straightforward verifi-
cation. To prove codim(FM) > 0 for any nontrivial structure M, it suffices to
show that for any degrees n̂ 6= 0 and ň 6= 0 such that n̂+ ň is a non-univariate
degree, we have

〈n̂+ ň〉 > 〈n̂〉+ 〈ň〉 − 1. (10)

In fact, if is straightforward to verify (10) for ℓ = 2, namely we have the inequality

(n̂1 + ň1 + 1)(n̂2 + ň2 + 1) > (n̂1 + 1)(n̂2 + 1) + (ň1 + 1)(ň2 + 1)− 1

if n̂1 + ň1 > 0 and n̂2 + ň2 > 0, and the inequality (10) for any positive integer
ℓ ≥ 2 follows an induction.

Let M be trivial. FM is open in Rm by Corollary 2. It is dense in Rm

since it equals Rm minus finitely many singular factorization manifolds of lower
dimensions. �

Corollary 4 provides an ultimate explanation why polynomial factorization is
an ill-posed problem: Any polynomial p having a nontrivial factorization is
singular in terms of factorization. Almost any perturbation ∆p results in the
data p̃ = p + ∆p that is pushed off the native manifold into the open dense
subset of nonsingular polynomials, altering the factorization to a trivial one. This
discontinuity makes the conventional factorization ill-posed and a challenge in
numerical computation. When the factorization structure is preserved, however,
the irreducible factorization is Lipschitz continuous as asserted in the following
corollary. It is this continuity that makes numerical factorization possible.

Corollary 5 (Factorization Continuity Theorem) The irreducible squarefree
factorization is locally Lipschitz continuous on a factorization manifold: For any

polynomial f ∈ FM with an irreducible squarefree factorization αfk1

1 · · · fkr
r , there

are constants δ, η > 0 such that, for every polynomial g ∈ FM satisfying ‖f−g‖ < δ,

the irreducible squarefree factorization βgk1

1 · · · gkr
r of g satisfies

dist
(

αfk1

1 · · · fkr
r , βgk1

1 · · · gkr
r

)

≤ η ‖f − g‖.

Proof. We can assume ‖f1‖ = · · · = ‖fr‖ = 1 and thus define the mapping
φ in (6) with bj = JfjK for j = 1, . . . , r. Using the notations in the proof of
Theorem 3, the mapping ζ(JgK) = φ̌−1

(

ψ(JgK),1, . . . , 1
)

is holomorphic and thus
Lipschitz continuous for any g ∈ FM near f . Thus the assertion of this corollary
follows from Lemma 1. �

4 Geometry of Factorization Manifolds

Factorization manifolds form a topologically stratified space Rm in which every
singular factorization manifold is embedded in manifolds of lower singularities as
we shall elaborate in detail. There are two embedding operations on a factorization
structure:
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– The degree combining operation is adding two ℓ-tuple degrees of the same
multiplicity while keeping other components of the factorization structure un-
changed:

· · ·nki

i · · ·nkj

j · · · −→ · · · (ni + nj)
k · · · where ki = kj = k. (11)

– The multiplicity splitting operation decomposes a component of a factoriza-
tion structure into two as follows:

· · ·nki

i · · · −→ · · ·nk̂i

i nk̃i

i · · · where ki = k̂i + k̃i. (12)

A factorization structure N is embedded in M, denoted by N ≺ M, if
N = M or M can be obtained by applying a sequence of embedding operations
on N. For example,

(4,3)5(1,6)2(3,2) ≺ (4,3)3(4,3)2(1,6)2(3, 2) (splitting (4, 3)5 to (4,3)3(4,3)2)

≺ (4,3)3(5,9)2(3,2) (combining (4,3)2(1,6)2 to (5,9)2)

The relation ≺ is a partial ordering among factorization structures.

Theorem 6 (Factorization Manifold Embedding Theorem) Let N be a

factorization structure and f ∈ FN. For any factorization structure M with

deg(N) = deg(M) = m, we have f ∈ FM if and only if N ≺ M. Furthermore,

codim(FN) > codim(FM) in Rm if N ≺ M and N 6= M.

Proof. Assume N ≺ M. To prove f ∈ FM, it suffices to show f ∈ F
Ñ

if Ñ is obtained from N by one of the embedding operations (11) and (12).
If Ñ is obtained by degree combining (11), then we can write f = fki f

k
j g with

fi ∈ Rni and fj ∈ Rnj being irreducible and coprime. By Corollary 4, there is a
polynomial sequence {hl}∞l=1 ⊂ Rni+nj converging to zero such that fifj +hl is

irreducible for all l = 1, 2, . . .. Thus f ∈ F
Ñ

since (fifj +hl)
kg ∈ F

Ñ
converges

to f for l → ∞. If Ñ is obtained by multiplicity splitting (12), then we can
write f = fki

i g with fi ∈ Rni . There is a sequence {hl}∞l=1 ⊂ Rni converging
to zero such that fi + hl is irreducible for all l = 1,2, . . .. Thus f ∈ F

Ñ
since

f k̂i

i (fi + hl)
k̃ig ∈ F

Ñ
with k̂i + k̃i = ki converges to f for l → ∞.

Conversely, assume f ∈ FM with an irreducible squarefree factorization
αfk1

1 · · · fkr
r . There is a sequence {gl}∞l=1 ⊂ FM converging to f . Write

M = m
k′
1

1 · · ·mk′
s

s and gl = βlg
k′
1

l1 · · · gk
′
s

ls
for l = 1,2, . . .. Clearly deg(M) ≥

deg(N). If deg(M) = deg(N), then Lemma 3 implies that we can further as-

sume the limit lim
l→∞

glj = ĝj ∈ Rmj for j = 1, . . . , s and βl → β̂. Due

to αfk1

1 · · · fkr
r = β̂ĝ

k′
1

1 · · · ĝk
′
s

s and the uniqueness of factorizations, we can fac-
tor polynomials ĝ1, . . . , ĝs and combine equivalent irreducible factors into higher
multiplicities to reproduce the squarefree irreducible factorization αfk1

1 · · · fkr
r .

Namely, the structure M can be obtained by a sequence of embedding operations
on N, leading to N ≺ M.

The inequality codim(FN) > codim(FM) follows from a straightforward verifi-
cation using (9) on (11) and (12). �

The FactorizationManifold Embedding Theorem implies the geometry of poly-
nomial factorization: The subset Rm of degree m polynomials is a disjoint union
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Fig. 1 Stratification of factorization manifolds in R(3,2), where N ≺ M indicates FN ⊂

FM.

of factorization manifolds that are topologically stratified in such a way that every fac-

torization manifold of positive singularity is embedded in the closure of a factorization

manifold of lower singularity. As an example, Figure 1 illustrates such a stratifi-
cation among all the factorization manifolds through corresponding factorization
structures in R(3,2).

We define the distance between a polynomial and a factorization manifold

dist
(

f,FM

)

= inf
g∈FM

(||f − g||). (13)

Let N be the factorization structure of f . The distance dist
(

f,FM

)

= 0 if

and only if f ∈ FM, which is equivalent to N ≺ M by the Factorization
Manifold Embedding Theorem. As a consequence, the native manifold FN of
f distinguishes itself as the unique factorization manifold that is of the highest

singularity (i.e. highest codimension) among all the factorization manifolds having
a distance zero to f . More precisely, a polynomial f belongs to a factorization
manifold FN if and only if, in Rm,

codim(FN) =

max
{

codim(FM)
∣

∣

∣
deg(M) = deg(f) = m and dist

(

f,FM

)

= 0
}

.

On the other hand, a polynomial f̃ ∈ FN with N 6≺ M implies that the distance
dist

(

f̃ ,FM

)

is positive. Since there are finitely many factorization manifolds,
there exists a minimum positive distance

θ
f̃

= min
FM 6∋ f̃

dist
(

f̃ ,FM

)

> 0. (14)
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The constant θ
f̃

is the critical gap of f̃ from unembedded singularities and it is
the very window of opportunity for numerical factorization. When the polynomial
f̃ ∈ FN is represented by an empirical version f with a small perturbation
‖f − f̃‖ < 1

2 θf̃ , the underlying factorization structure can still be identified by
the following lemma.

Lemma 4 Let f̃ be a polynomial with a factorization structure N with θ
f̃

be given

in (14). For any empirical data f of f̃ satisfying ‖f − f̃‖ < 1
2 θf̃ , the factorization

structure N of f̃ is uniquely identifiable using the data f by

codim(FN) =

max
{

codim(FM) | deg(M) = deg(f) = m and dist
(

f,FM

)

< ǫ
}

(15)

in Rm for any ǫ satisfying dist
(

f,FN

)

< ǫ < 1
2 θf̃ .

Proof. A straightforward verification. �

In summary, singular polynomials form factorization manifolds with positive
codimensions and nonsingular polynomials form an open dense subset in Rm.
Those factorization manifolds topologically stratify in such a way that every sin-
gular manifold belongs to the closures of some manifolds of lower singularities.
Almost all tiny perturbations on a singular polynomial alter its factorization struc-
ture in such a way that the singularity reduces and never increases. There is a gap
from any singular polynomial to higher singularity and this gap ensures the lost
factorization structure can be recovered by finding the highest singularity mani-
fold nearby if the perturbation is small. As a result, identifying the factorization
structure is well-posed as an optimization problem.

5 The notion of numerical factorization

We shall rigorously formulate the concept of the numerical factorization to remove
the ill-posedness of the conventional factorization, and to achieve the main objec-
tive of recovering the exact factorization accurately using the imperfect empirical
data. The numerical factorization should approximate the underlying factoriza-
tion with an accuracy the data deserve. The following problem statement gives
a precise description of the problem that numerical factorization is intended to
solve.

PROBLEM 51 (Numerical Factorization Problem) Let f be a polynomial

as the empirical data of an underlying polynomial f̃ whose irreducible factorization

α̃f̃1 · · · f̃r is to be computed. Assuming the data error
∥

∥f − f̃
∥

∥ is sufficiently small,

find an irreducible factorization αf1 · · · fk of a certain polynomial f̂ such that both

the backward error and forward error are in the order of data error and the unit round-

off:

∥

∥f − αf1 · · · fk
∥

∥ = O
(

‖f − f̃‖+ u
)

(16)

dist
(

αf1 · · · fk, α̃f̃1 · · · f̃r
)

= O
(

‖f − f̃‖+ u
)

. (17)

where u is the unit round-off in the floating point arithmetic.
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Problem 51 goes a step further from the Open Problem 1 in [16] in which only
the backward error is required to be small. Notice that the factorization αf1 · · · fk
in (17) does not need to have the same number of factors as the underlying
factorization α̃f̃1 · · · f̃r. When r 6= k and the distance is small in (17), some of
the factors are approximately constants.

The assumption of the data error ‖f − f̃‖ to be sufficiently small should not
be confused with the local convergence of an iterative method. It is not a require-
ment of having a good approximation of the solution as local convergence implies.
Rather, it assumes we are not trying to solve a problem that is too faraway to
be relevant. From conventional factorization where data error is required to be
zero, allowing sufficiently small data perturbation while still achieving a high ac-
curacy is the significant advancement that the numerical factorization is intended
to achieve. Basic data integrity is required in all scientific studies, albeit almost
always implicitly. It needs to be explicitly stated here because we are in a frontier
of solving discontinuous problems for which the difference is profound between
exact data and perturbed ones, and the latter may be all we have.

F 

F 

 

 
 

, Î  F Ì F 

e-neighborhood of  f 

N 

M 

N 

M 

Fig. 2 Illustration of the numerical factorization of f

Let f̃ be the polynomial in Problem 51 with the factorization structure M

and f be its empirical data representation, as illustrated in Figure 2. By the
Factorization Manifold Embedding Theorem, the data polynomial f is away
from the native factorization manifold FM with a reduced singularity. Note that
the data polynomial f is also near all the factorization manifolds FN with
M ≺ N and the native manifold FM is not the nearest in distance but highest
in singularity by Lemma 4. Upon identifying the factorization structure M, it
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is then natural to calculate the exact irreducible factorization αfk1

1 · · · fkr
r of

the polynomial f̂ ∈ FM that is the nearest to f and designate it as the
numerical irreducible factorization of f since Corollary 5 suggests that the (exact)
irreducible factorization of f̂ approximates that of f̃ . The following definition
is the detailed formulation.

Definition 7 (Numerical Factorization) For a given polynomial f and a back-

ward error tolerance ǫ > 0, we say αf1f2 · · · fs is a numerical irreducible fac-

torization of f within ǫ if αf1f2 · · · fs ∈ FM is an irreducible factorization

and

min
γ∈C

∥

∥f − γf1f2 · · · fs
∥

∥ = min
g∈FM

‖f − g‖ = dist
(

f, FM

)

< ǫ, (18)

where M is the factorization structure of the degree m = deg(f) with the highest

singularity

codim(FM) = max
{

codim(FN)
∣

∣ deg(N) = m and dist(f,FN) < ǫ
}

(19)

in Rm. We call αfk1

1 · · · fkr
r a numerical irreducible squarefree factorization

of f within ǫ if it is squarefree and it is a numerical irreducible factorization of

f within ǫ.

We shall use the abbreviated term numerical factorization for either the
numerical irreducible factorization or the numerical irreducible squarefree factor-
ization when the distinction is insignificant in the context. The formulation of the
numerical factorization follows the same “three-strikes” principles that have been
effectively applied to the regularization of other ill-posed algebraic problems [31]:
The numerical factorization of f is the exact factorization of a nearby polynomial
f̂ within a backward error tolerance ǫ (backward nearness principle). The nearby
polynomial f̂ is of the highest singularity among all the polynomials in the ǫ-
neighborhood of f (maximum singularity principle). The nearby polynomial f̂

is the nearest polynomial to the given f among all the polynomials with the same
singularity as f̂ (minimum distance principle).

The error tolerance ǫ in Definition 7 depends on the particular applica-
tion, the hardware precision, the underlying polynomial f̃ and the data error
‖f − f̃‖. The interval for setting ǫ will be established in the Numerical Fac-
torization Theorem in §6. Notice that a polynomial f can easily have different
numerical factorizations within different error tolerances approximating different
factorizations (c.f. Example 5 in §9).

6 Regularity and sensitivity of numerical factorization

As a concept attributed to Jacques S. Hadamard, a mathematical problem is well-
posed if its solution holds existence, uniqueness and continuity with respect to
data. Furthermore, Lipschitz continuity of the solution is crucial for numerical
computation as it implies a finite sensitivity with respect to data perturbations
and round-off. With the geometry established in §3 and §4 , the well-posedness
of numerical factorization is a direct consequence of the Tubular Neighborhood
Theorem, which is one of the fundamental results in differential topology. The
following elementary version of the Tubular Neighborhood Theorem is adapted
from its abstract form for complex analytic manifolds in C

n.
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Lemma 5 (Tubular Neighborhood Theorem) [33] Every complex analytic man-

ifold is contained in a tubular neighborhood. More precisely, for every complex an-

alytic manifold Π in C
n, there is an open subset Ω of C

n containing Π

and a projection mapping π : Ω −→ Π such that, for every z ∈ Ω, its projec-

tion π(z) ∈ Π is the unique distance-minimization point from z to Π, namely

‖π(z) − z‖2 = min
u∈Π

∥

∥u − z
∥

∥

2
. Furthermore, the mapping π is locally Lipschitz

continuous.

We can now establish the main theorem, which asserts the properties that are
desirable from the numerical factorization as formulated in Definition 7, provides
a complete regularization and, in essence, achieves the objectives of numerical
factorization in Problem 51.

Theorem 8 (Numerical Factorization Theorem) Let f̃ ∈ Rm be a polynomial

with its critical gap θ
f̃

as in (14) and an irreducible factorization α̃f̃1f̃2 · · · f̃k. Then

θ
f̃
> 0 and the following properties of numerical factorization hold.

(i) Conventional factorization is a special case of numerical factorization: The

numerical factorization of f̃ within any ǫ ∈ (0, θ
f̃
) is identical to the exact

irreducible factorization of f̃ .

(ii) Computing numerical factorization is a well-posed problem: There is a neigh-

borhood Ω
f̃

of f̃ in Rm such that every f ∈ Ω
f̃

is associated with a constant

δf ≤ ‖f − f̃‖ such that the numerical factorization αf1f2 · · · fl of f uniquely

exists within ǫ for all ǫ ∈
(

δf ,
1
2 θf̃

)

and is Lipschitz continuous with respect to

f .

(iii) Numerical factorization is backward accurate: For every f ∈ Ω
f̃

and ǫ in
(

δf ,
1
2 θf̃

)

, the numerical factorization αf1f2 · · · fl of f within ǫ satisfies

∥

∥f − αf1f2 · · · fl
∥

∥ ≤ ‖f − f̃‖. (20)

(iv) The conventional factorization can be accurately recovered from empirical

data: For every f ∈ Ω
f̃

as empirical data of f̃ and ǫ ∈
(

δf ,
1
2 θf̃

)

, the

numerical factorization αf1f2 · · · fl of f within ǫ has the identical structure as

α̃f̃1f̃2 · · · f̃k and

dist
(

αf1f2 · · · fl, α̃f̃1f̃2 · · · f̃k
)

< η
f̃
‖f − f̃‖. (21)

where η
f̃
> 0 is a constant depends on f .

Proof. Let M denote the factorization structure of f̃ . Then FM is the
manifold of the highest singularity within ǫ ∈ (0, θ

f̃
) of f̃ , and f̃ itself is the

polynomial of minimum distance zero on FM from f̃ , and thus (i) holds.
Let Σ be the tubular neighborhood of FM described in Lemma 5 and let

Ω
f̃
⊂ Σ be a neighborhood of f̃ such that every f ∈ Ω

f̃
satisfies ‖f− f̃‖ < 1

2 θf̃ .

Set δf = dist
(

f,FM

)

. Then, for every ǫ ∈ (δf ,
1
2θf̃ ) the equality (19) holds since

dist
(

f,FN

)

> 1
2 θf̃ > ǫ for every N 6≻ M. By the Tubular Neighborhood Theorem,

there exists a unique f̂ = π(f) ∈ FM with minimal distance to f . As a result, the
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numerical factorization of f uniquely exists as the exact irreducible factorization
of f̂ , and the numerical factorization is locally Lipschitz continuous since π is
locally Lipschitz continuous along with Corollary 5, leading to part (ii).

Part (iii) is true since ‖f − f̂‖ ≤ ‖f − f̃‖. The Lipschitz continuity of the
numerical factorization also implies (21) and part (iv). �

In simpler terms, Numerical Factorization Theorem ensures that every fac-
torable polynomial f̃ is allowed to be perturbed while its factorization can still
be recovered as long as the empirical data f is still in the neighborhood Ω

f̃
. For

each data representation f of f̃ , there is a window (δf ,
1
2 θf̃ ) for setting the

error tolerance ǫ for recovering the factorization of f̃ . The fact that the lower
bound δf of the error tolerance ǫ is no larger than the data error ‖f − f̃‖ is

significant in practical computation: If a data error bound η > 0 for ‖f − f̃‖
is known or can be estimated in an application, the error tolerance can be set at
ǫ = η or a moderate multiple of the unit round-off, whichever is larger. The upper
bound 1

2 θf̃ appears to be difficult to estimate but not needed as long as it is not
too small.

With a proper error tolerance ǫ, the numerical factorization of the data f

within ǫ approximates the exact factorization of the underlying polynomial f̃

with an accuracy in the same order of the data accuracy. Namely, the numerical
factorization we formulated in Definition 7 achieves the objective of the numerical
factorization problem as specified in Problem 51. Furthermore, computing the
numerical factorization is a well-posed problem with a finite sensitivity that can
be established in the following theorem.

The assumption f̃ ∈ Rm in Theorem 8 implies that the degree of the data
polynomial f is the same as the degree of the underlying polynomial f̃ . If the
data error is sufficiently small, the degree of the data polynomial is at least equal
to the degree of the underlying polynomial. When the perturbation is of a higher
degree but sufficiently small in magnitude in monomial basis, the coefficients of
those extra monomials are below the error tolerance. As illustrated in Example 2
in §9, higher degree perturbations in monomial basis generally are negligible in
practical computation.

The condition f ∈ Ω
f̃

in Theorem 8 is to ensure the data error to be “suffi-
ciently small” as one of main assumptions of this paper. As Tubular Neighborhood
Theorem dictates, the given polynomial needs to be close to manifold since the
projection to the manifold may not be unique otherwise. As a result, accurate
recovery of the factorization cannot be guaranteed from perturbed data with large
errors. Theories and algorithms for numerical factorizations with data pertur-
bations of large magnitudes, higher degrees and in polynomial bases other than
monomials are open problems for further studies.

Theorem 9 (Numerical Factorization Sensitivity Theorem) Let αfk1

1 · · · fkr
r

be the numerical factorization of f within certain ǫ and g be sufficiently close to f

so that its numerical factorization within ǫ can be written as and γgk1

1 · · · gkr
r with

deg(gj) = deg(fj) = mj for j = 1,2, . . . , r. Further assume J (·) is as defined in

(7) where bj ∈ C
〈mj〉 with ‖bj‖2 = 1 and bj · JfjK = 1 for j = 1, . . . , r. Then

lim sup
g→f

dist
(

αfk1

1 · · · fkr
r , γgk1

1 · · · gkr
r

)

‖f − g‖ ≤ η
∥

∥

∥
J (α, Jf1K, . . . , JfrK)

+
∥

∥

∥

2
< ∞ (22)
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where η is a constant associated with f and b1, . . . ,br.

Proof. A straightforward verification using Theorem 2 in [33] and Lemma 1.
�

The inequality (22) depends on the choices of the specific representative factor-
ization αfk1

1 · · · fkr
r in the equivalent class of factorizations and the scaling vectors

b1, . . . ,br. Independent of those choices, we define the positive real number

κǫ(f) := inf
{

∥

∥J (β, Jh1K, . . . , JhrK)
+
∥

∥

2

∣

∣

∣
βhk1

1 · · ·hkr
r ∼ αfk1

1 · · · fkr
r ,

bj ∈ C
〈mj〉, ‖bj‖2 = 1, bj · JhjK = 1, j = 1, . . . , r

}

(23)

as the condition number of the numerical factorization of f within ǫ where
αfk1

1 · · · fkr
r is a numerical squarefree irreducible factorization of f within ǫ. From

Lemma 2, this condition number is finite since the factorization αfk1

1 · · · fkr
r of f

is squarefree, and κǫ(f) becomes large when the Jacobian J (β, Jh1K, . . . , JhrK)
+

is near rank-deficient when two of the factors h1, . . . , hr are a small perturbation
away from having nonconstant GCD. Consequently, the nature of the computation
stability of numerical factorization become apparent: The numerical factorization

αfk1

1 · · · fkr
r of f is ill-conditioned if there exist two factors fi and fj that are near

non-coprime polynomials so that a small perturbation of f can increase the singularity

above that of f̂ = αfk1

1 · · · fkr
r .

7 On the numerical squarefree factorization

Every polynomial f has a unique squarefree factorization αfk1

1 · · · fkr
r where

f1, . . . , fk are pairwise coprime squarefree polynomials. Such squarefree factoriza-
tions are important in its own right and usually easier to compute than irreducible
factorizations. Our numerical factorization test algorithm and implementation
start with finding a numerical squarefree factorization followed by numerical ir-
reducible factorizations of the squarefree components. Naturally, the notion of
numerical squarefree factorization and its properties are in question.

Similar to (irreducible) factorization structure, we can define a squarefree factor-

ization structure N = nk1

1 · · ·nkr
r of polynomials having a squarefree factorization

f = αfk1

1 · · · fkr
r where k1 ≤ · · · ≤ kr where fj ∈ Rnj is squarefree for j = 1, . . . , r

and pairwise coprime. Also let SN denote the collection of polynomials in Rm

having a squarefree factorization structure N. Notice that Lemma 2 applies to
squarefree factorizations since the irreducibility of factors is not required. It is
also a straightforward verification that Lemma 3 and Corollary 1 still hold for
SN. As a result, the subset SN is also a complex analytic manifold in Rd of
codimension

codim(SN) = 〈d〉 −
(

〈n1〉+ · · ·+ 〈nr〉+ 1− r
)

.

The embedding properties of squarefree factorization manifolds hold as well.
Similar to Definition 7, we can formulate the numerical squarefree factorization

of a polynomial f within an error tolerance ǫ as the exact factorization of a
polynomial f̂ ∈ SN where SN is the squarefree factorization manifold of the
highest codimension among all manifolds intersecting the ǫ-neighborhood of f
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and f̂ is the nearest polynomial from f on SN. Such a numerical squarefree
factorization is a generalization of the conventional exact squarefree factorization
and accurate approximation to the exact squarefree factorization of the underlying
polynomial f̃ . Furthermore its computation is a well-posed problem with a finite
sensitivity measure.

For a unit vector z = (z1, . . . , zℓ) ∈ C
ℓ, let ∂zp denote the directional

derivative of p ∈ C[x1, . . . , xℓ] along (the direction of) z, namely

∂zp = z1
∂p

∂x1
+ · · ·+ zℓ

∂p

∂xℓ
.

The following lemma is the basis for the numerical squarefree factorization.

Lemma 6 Every f ∈ C[x1, . . . , xℓ] has a squarefree factorization αhk1

1 · · ·hkr
r with

non-constant factors h1, . . . , hr and distinct multiplicities k1, . . . , kr ≥ 1. Further-

more, for almost all unit vectors z ∈ C
ℓ,

gcd (v, l · ∂zv − w) =

{

hj for l = kj with j = 1, . . . , r
1 if l 6∈ {k1, . . . , kr}

(24)

where v and w are cofactors of u = gcd (f, ∂zf) such that f = uv and ∂zf = uw.

Proof. The existence of h1, . . . , hr is obvious. For almost all z ∈ C
ℓ,

∂zhj 6= 0 for j = 1, . . . , r. Thus v ∼ h1 · · ·hr and w ∼
r

∑

j=1

kj(∂zhj)
∏

i6=j

hi,

leading to (24). �

The numerical squarefree factorization can be computed by a sequence of nu-
merical greatest common divisor replacing the exact GCD in (24).

By Lemma 2, the Jacobian of the mapping φ in (6) is injective at the
least squares solution of φ(β, Jg1K, . . . , JgrK) = (JfK, 1, . . . , 1), implying the Gauss-
Newton iteration locally converges to this least squares solution if the data f and
the initial iterate are sufficiently accurate.

Due to its similarity with the numerical irreducible squarefree factorization,
we omit the detailed elaboration of the numerical squarefree factorization in this
paper.

8 Computation of numerical factorizations

Overall, computing the numerical factorization consists of two stages. The first
stage identifies the factorization structure along with initial approximations of
the numerical factors. In the second stage, the numerical factors are refined to
minimize the distance from the given polynomial to the manifold associated with
the factorization structure.

In the first stage, the factorization structure can be computed by a sequence
numerical squarefree factorizations,rank-revealing of the Ruppert matrices [9,18,
23], generalized eigenvalue computation and numerical greatest common divisor
calculation. Initial approximations of the numerical factors are obtained as by-
products. The computation requires standard numerical linear algebra operations
with complexities of O(n3) where n is the number of relevant monomials of the
polynomial and the numerical factors.
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In the second stage, the initial factor approximations p1, . . . , pr of degrees
m1, . . . ,mr can be scaled to unit norms

∥

∥p1
∥

∥ = · · · =
∥

∥pr
∥

∥ = 1. The mapping
φ in (6) becomes well defined by setting up the scaling vectors bi = JpiK for
i = 1, . . . , r, The second stage of the numerical factorization algorithm is essentially
the process of solving for the least squares solution to the overdetermined nonlinear
system

φ(z) = (JfK, 1, . . . , 1), with z ∈ C× C
〈m1〉 × · · · × C

〈mr〉 (25)

using the Gauss-Newton iteration

zj+1 = zj −J (zj)
+ φ(zj), j = 0, 1, . . . . (26)

where J (z)+ is the pseudo-inverse of the Jacobian J (z) of φ(z) given in (7)
and z0 = (α, Jp1K, . . . , JprK).

Detailed discussion on the Gauss-Newton iteration and conditions for its con-
vergence can be found in [2,26,31,33]. In a nutshell, the iteration (26) locally
converges to the least squares solution z∗ that is the point satisfying
∥

∥φ(z∗)− (JfK, 1, . . . , 1)
∥

∥

2
= min

z∈C×C〈m1〉×···×C〈mr〉

∥

∥φ(z)− (JfK, 1, . . . , 1)
∥

∥

2
(27)

if both the residual
∥

∥φ(z∗)− (JfK, 1, . . . , 1)
∥

∥

2
and the initial error ‖z0 − z∗‖2 are

small.

Lemma 7 Let αfk1

1 · · · fkr
r be the numerical squarefree irreducible factorization of

f within ǫ with mj = deg(fj) for j = 1, . . . , r. Then, for almost all unit vectors

bi ∈ C
〈mi〉, i = 1, . . . , r, there is a factorization α∗f

k1

∗1 · · · fkr
∗r ∼ αfk1

1 · · · fkr
r such

that z∗ =
(

α∗, Jf∗1K, . . . , Jf∗rK
)

is the least squares solution to the equation (25) with
residual

∥

∥φ(z∗)− (JfK, 1, . . . , 1)
∥

∥

2
= ‖f − αfk1

1 · · · fkr
r ‖ (28)

where φ is defined as in (6).

Proof. Clearly
∥

∥φ(z)− (JfK, 1, . . . , 1)
∥

∥

2
≥ ‖f − αfk1

1 · · · fkr
r ‖ by Definition 7.

On the other hand, setting f∗i =
1

bi·JfiK
fi for i = 1, · · · , r and an appropriate

α∗ yields (28). �

Under the main condition that the Jacobian J (z∗) is of full rank, the Gauss-
Newton iteration converges locally [31]. The local convergence of the Gauss-
Newton iteration requires two conditions: The initial iterate z0 must be near
the least squares solution z∗ and the residual ‖φ(z∗)− (JfK, 1, . . . , 1)‖2 must be
sufficiently small. From (28), the residual ‖φ(z∗) − (JfK, 1, . . . , 1)‖2 is bounded
by the data error ‖f − f̃‖. As a result, the residual requirement will be satisfied
if the data error is sufficiently small.

The convergence of the two-staged method relies on the basic assumption of
the problem data being sufficiently close to the underlying polynomial. Accurate
data lead to sufficiently small residual and an initial iterate being close to the least
squares solution so that the local convergence conditions of Gauss-Newton iteration
are satisfied based on the alpha-theory [2,26]. Conversely, numerical factorization
from poor data is not guaranteed to succeed partly because the Gauss-Newton
iteration is locally convergent. The algorithmic and technical details of the nu-
merical factorization are beyond the scope of this paper and will be elaborated in
a separate report.
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9 Implementation, software and sample results

Our numerical factorization test algorithm is implemented for both univariate and
multivariate polynomials as a function PolynomialFactor in the Matlab package
NAClab for numerical algebraic computation as an upgrade and an expansion from
its predecessor Apalab [32]. The entire NAClab package is freely available1, includ-
ing numerical factorization, numerical rank-revealing, numerical computation of
multiplicity structure at zeros of nonlinear systems, numerical greatest common
divisors, etc. We shall present several sample results highlighting the theories in
this paper and the major improvement areas of our test algorithm and the result-
ing software: Efficiency, accuracy, versatility and user friendliness. The numerical
factorization software is made available for other researchers to experiment with.
All the tests are carried out on a Samsung Series 7 XE700T1A tablet computer
with 4GB memory and Intel i5-2467M CPU at 1.60 GHz running on Windows 7
64-bit operating system. The test log and relevant Matlab/Maple scripts can be
downloaded online2.

The Matlab package NAClab provides a user friendly interface for numerical
algebraic computations. Polynomials can be entered and output as intuitive strings
for casual users. The function PolynomialFactor can be conveniently executed by
setting an error tolerance at or slightly above the magnitude of the data error.

Example 2 (Basic software application) Consider the polynomial

f = −30+ 20x+ 18x2 − 12x3 + 12.000007 x y − 8x2 y + 3× 10−7 x3 y − 5 y2

+3x2 y2 + 2x y3

≡ (3 x2 + 2 x y − 5) (y2 − 4 x+ 6) + 0.0000003 x3 y + 0.000007 xy

as the data polynomial of (3 x2 + 2 xy − 5) (y2 − 4 x + 6) with a perturbation
of magnitude about 7 × 10−6. Setting the error tolerance slightly larger as, say
10−5, a call of the functionality PolynomialFactor in NAClab yields

>> p = ’-30+20*x+18*x^2-12*x^3+12.000007*x*y-8*x^2*y+3e-07*x^3*y-5*y^2+3*x^2*y^2+2*x*y^3’

>> PolynomialFactor(p,1e-5,’row’)

ans =

(-30.0000005908641) * (1-0.6*x^2-0.400000158490569*x*y) * (1-0.666666625730982*x+0.166666656432746*y^2)

The resulting numerical factorization has the same order of accuracy as the data.
Notice that the degree of the perturbation is not limited to the degree of the
underlying polynomial.

Example 3 (Univariate factorization) Accurate factorization of univariate polyno-
mials with multiple roots has been a challenge in numerical computation. Conven-
tional software functions for polynomial root-finding, such as Matlab roots and
Maple fsolve can not factor such polynomial accurately and output scattered root
clusters. For example, let

f(x) =

= x100 − 222.222222222222 x99 + · · · − 8.53544016536406 10
30 x+ 1.47799829703274 10

29 (29)

≈ (x− 4.444444444444444)10(x− 3.333333333333333)20(x− 2.222222222222222)30 ×
(x− 1.111111111111111)40

1 http://homepages.neiu.edu/∼naclab.html
2 http://homepages.neiu.edu/∼zzeng/NumFactorTests.zip
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In contrast, our PolynomialFactor is an advanced polynomial root-finder that is
capable of accurate computation for multiple roots without extending machine pre-
cision even if the coefficients are perturbed. On this example, our PolynomialFactor
yields a factorization containing accurate roots and multiplicities:

>> PolynomialFactor(f,1e-10,’row’)
ans =
(x-4.44444444445)^10 * (x-3.33333333333)^20 * (x-2.22222222222)^30 * (x-1.11111111111)^40

This is a substantial improvement over its predecessor [30]. �

Since available software implementations for multivariate factorizations are
built on different platforms, based on different notions of numerical factoriza-
tions, and with different designing emphases, comprehensive comparisons are not
feasible. Among them, Maple factor is built for the exact factorization. Devel-
oped by Vershelde, the package PHC[29] is a general-purpose polynomial system
solver whose factorization option -f is perhaps the first implemented numerical
factorization software. This PHC option initiates the implementation of a factoriza-
tion algorithm [27] in numerical computation based on the homotopy continuation
method. The Maple code appfac is developed by Kaltofen, May, Yang and Zhi [19]
and the algorithm uses similar reducibility test based on [9,23], which appears to
be superior in factoring polynomial with highly perturbed data. The computing
examples in the remainder of this section are designed to showcase the differences
and improvement areas of our test algorithm and implementation.

Example 4 (Stewart-Gough Platforms) In [27], the authors tested three polynomials
derived from the Stewart-Gough platform manipulator in mechanical engineering:







g1 = F1(q0, q1, q2, q3) (q
2
0 + q21 + q22 + q23)

3

g2 = F2(q0, q1, q2, q3) (q
2
0 + q21 + q22 + q23)

3

g3 = ap33(q0 + bq3)(q0 + cq3)(q0 + i q3)
5(q0 − i q3)

5
(30)

where F1, F2 ∈ C[q0, q1, q2, q3]. The polynomials g1 and g2 both have 910 terms
while g3 has 24. We test PHC in windows 7 command prompt using the compiled
executable file phc.exe provided by its authors compared with our interpretive
code PolynomialFactor in Matlab. To level the base of accuracy comparison,
we disabled the Gauss-Newton iteration option in our PolynomialFactor in this
test since the iterative refinement was not developed for the computed factors
when PHC was released. Table 2 lists the elapsed execution times and the errors,
where the forward errors are measured on the known factors only. Since the
three implementations are tested on different platforms, the comparisons should
be considered indirect. Nonetheless, the results appears to show our algorithm
is efficient and accurate on those polynomials. It also appears that PHC has been
improved substantially as it runs much faster and outputs more accurate factors
than it is reported in 2004. It also needs to be pointed out that PHC is based
on homotopy method that is naturally parallel and is generally much faster on
parallel computers. The test is conducted on sequential machine since, at this
point, parallelization of PolynomialFactor has not been considered. ⊓⊔

Example 5 (A polynomial with 5 numerical factorizations) An issue of significant im-
portance on the concept of numerical factorization is that a polynomial may have
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g1 g2 g3

Maple factor not designed for empirical data
appfac −−−−−−−−−

elapsed time 1382.8 1410.1 1.48

PHC backward error 9.6× 10−10 0.9945 1.7× 10−12

forward error 1.3× 10−12 1.1× 10−12 3.4× 10−13

elapsed time 376.5 480.3 0.79

PolynomialFactor backward error 4.3× 10
−15

4.1× 10
−15

4.8× 10
−14

(without refinement) forward error 2.0× 10
−15

8.5× 10
−16

5.0× 10
−16

Table 2 Factorization results on polynomials in (30) derived from Stewart-Gough platforms.

different numerical factorizations within different error tolerances approximating
different conventional factorizations. A numerical factorization algorithm in this
context needs mechanisms for targeting specific factorizations. For example, the
polynomial

p1 = x7y + x5y3 + x6 − x y7 − x3y5 − 3x2 y4 + 2(x3 y3 − x2 y6 + x6 y2 − x y5 − y6 + x4)

+6x2y2 + 7x4y2 + 4x5y + .999001x y3 + 1.998002001x y + 4.999001x3 y + 2.999001 y2

−1.000999x2 + .001(y3 + x3 + 3x y2 + x3y2 + 3 x2y + x4 y + x y4 + x2y3 + 2 y + 2x)

−2.001997998999 (31)

can be considered as empirical data of p1 itself and any one of the four factorable
polynomials

p2 = (xy + 1) (.001(x2y + xy2 + y3 + x3 + 2x) + 6x3y + 2x5y + 2x2y2 − 1.000999x2 + 2x4

+ x6 − y6 + x4y2 + 4xy − x2y4 + 2.999001y2 − 2xy5 − 2.001997999+ .002x− 2xy3)
p3 = (−2xy3 + 2xy + 2x3y + x4 + 2y2 − y4 − 1.000999+ .001y + .001x)(x2 + y2 + 2)(xy + 1)
p4 = (x3 − xy2 + x+ x2y − y3 + y + x2 − y2 + 1.001)(x + y − 1)(x2 + y2 + 2)(xy + 1)
p5 = (x+ y + 1)(x2 − y2 + 1)(x+ y − 1)(x2 + y2 + 2)(xy + 1)

(32)

with data errors of various magnitudes listed in Table 3. In other words, the poly-
nomial p1 has a numerical factorization 1 · p1 within an error tolerance between
0 and 10−14, and numerical factorizations within error tolerances roughly in the
intervals (10−13, 10−12), (10−9, 10−8), (10−6, 10−5) and (10−3, 10−2) approx-
imating the exact factorizations of p2, p3, p4, p5 in (32) respectively. Our
formulation of the numerical factorization includes the error tolerance ǫ and our
implementation PolynomialFactor provides such an option. Based on the choices
of those error tolerances, PolynomialFactor calculates all five numerical factoriza-
tions (32) with forward accuracies in the same orders of the data errors as shown
in Table 3. Other algorithms such as Maple factor, PHC and appfac are designed
to compute one numerical factorization from a given polynomial data. ⊓⊔

10 Conclusions

Conventional factorization is an ill-posed problem in the sense that it is infinitely
sensitive to data perturbations. The reason for such hypersensitivity is revealed
by the geometry of polynomial factorization and the singularity can be quantified
by the dimension deficit of the factorizationmanifold. The numerical factorization
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underlying polynom-

ial to be factored
p1 p2 p3 p4 p5

data error sin(p1, pj) 0 7.4×10
−14

1.1×10
−10

2.6×10
−7

4.9×10
−4

Maple factor 0 −−−− −−−− −−−− −−−−

appfac+refinement −−−− −−−− −−−− 2.4×10
−7 −−−−

PHC (no refinement) −−−− −−−− 1.4×10
−9 −−−− −−−−

PolynomialFactor 7.0×10
−16

8.9×10
−14

9.2×10
−11

2.1×10
−7

5.6×10
−4

Table 3 Forward accuracies of Maple factor, PHC, appfac and PolynomialFactor from the
data polynomial p1 in (31) calculating the factorization of either p1, p2, p3, p4 or p5 (32).

as formulated in this paper generalizes the concept of conventional factorization
and eliminates the ill-posedness. By establishing the fundamental theorems for
geometric structure of multivariate factorization, we proved that the numerical
factorization uniquely exists and possesses Lipschitz continuity with respect to
data under the overall assumption that the data error is small. Consequently,
the numerical factorization achieves the objective of recovering the factorization
accurately even if the polynomial data are empirical and the accuracy is in the
order of data precision. An algorithm is implemented as a Matlab module and
numerical results support this conclusion.
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