MuLTROOT — A Matlab package computing polynomial roots
and multiplicities

Zhonggang Zeng*

Abstract

MULTROOT is a collection of Matlab modules for accurate computation of polynomial
roots, especially roots with non-trivial multiplicities. As a blackbox-type software, MUL-
TROOT requires the polynomial coefficients as the only input, and outputs the computed
roots, multiplicities, backward error, estimated forward error, as well as the pejorative
condition number. The most significant features of MULTROOT are the multiplicity iden-
tification capability and the remarkable accuracy on multiple roots without using the mul-
tiprecision arithmetic, even if the polynomial coefficients are inexact. A comprehensive
test suit of polynomials that are collected from the literature is included for numerical
experiments and performance comparison.

Categories and Subject Descriptors: G.1.5 [Mathematics of Computing]: Roots of
Nounlinear Equations — Iterative methods; methods for polynomials; G.4 [Mathematics of
Computing]: Mathematical Software — Algorithm design and analysis; Cettification and
testing.

Additional key Words and Phrases: Polynomial, root-finding, multiple roots, multi-
plicity identification

1 Overview

Polynomial root-finding is a fundamental mathematical problem with a long history. It remains
a challenge today. One of the most difficult issues in root-finding has been computing multiple
roots and identifying the multiplicities.

Several root-finders have been established and implemented as standard softwares, such as
Laguerre’s method implemented by Numerical Algorithms Group (FORTRAN code C02AFF)
and Numerical Recipes (FORTRAN code ZROOTS), Jenkins-Traub method implemented by
IMSL (FORTRAN code DZPOCC) and Mathematica (NSOLVE), as well as QR algorithm
on the companion matrix implemented in Matlab (ROOTS). There is, however, a common
limitation for all those methods. Namely they are subject to a barrier of attainable accuracy
[[garashi et al.1995] in computing multiple roots. Using the standard double precision of 16
decimal digits, a root of multiplicity 5 can only be calculated to an accuracy of 3 correct
digits, assuming that the polynomial coefficients have at least 15 digits of accuracy. If the

*Department of Mathematics, Northeastern Illinois University, Chicago, IL 60625, email: zzeng@neiu.edu.

coefficients are inexact, those standard methods can not calculate multiple roots accurately
even if multiprecision is used.

In this paper, we introduce a root-finding package MULTROOT that accurately calculates
polynomial roots, especially those involve non-trivial multiplicities and inexact coefficients, as
well as the corresponding multiplicities, using the standard machine precision only.

The package is an implementation of two novel algorithms GCDRoOOT and PEJROOT and their
combination MULTROOT [Zeng 2003]. For a given polynomial

p(z) =pox" + p1a" "t 4+ pao1T + Py (1)
GCDROOT calculates its multiplicity structure ¢ = [¢1,-- -, {,,] that reveals the factorization
p(a) = po(—x1)" - (x — @) (2)

with distinct unknown roots x1,---,x,,. While identifying the multiplicity structure, GCD-
ROOT also computes an initial approximation to the distinct roots x;’s. Given the multiplicity
structure and the initial root approximation, PEJROOT refines the roots to an optimal accuracy
permissible by the pejorative condition number.

The analysis and description of the algorithms is reported in a paper [Zeng 2003] written by
the author.

2 The call sequence and the interpretation of output

MULTROOT is easy to use. Using the Matlab representation of the polynomial (1) as a coeffi-
cient vector p = (po,p1,-*-,Pn), execution of MULTROOT a simple Matlab call

>> z = multroot(p);

For example, to calculate the roots of

pr) = 29— 172 4 1272% — 54927 + 15212° — 282325 + 35572 — 30072 +
+16342% — 5162 + 72,

only two Matlab commands are needed. One line defines the coefficient vector, and the other
line calls MuLTROOT:

>> p = [1 -17 127 -549 1521 -2823 3557 -3007 1634 -516 72];
>> z = multroot(p);
THE PEJORATIVE CONDITION NUMBER: 20.1463
THE BACKWARD ERROR: 3.22e-016
THE ESTIMATED FORWARD ERROR: 1.30e-014
computed roots multiplicities

2.999999999999997 2
2.000000000000001
1.000000000000000 5

w

The result shows an accurate factorization of the original polynomial

plx) = (z = 1)°(z - 2)*(z - 3)°. (3)

In addition to this screen print-out, the output z of MULTROOT is the two-column matrix

2.999999999999997 2
z = | 2.000000000000001 3 (4)
1.000000000000000 5

The first column consists of those distinct computed roots, while the entries in second column
are the corresponding multiplicities. In contrast, the standard Matlab built-in root-finder
ROOTS not only fails to recognize the presence of multiple roots, but also produces results that
are not nearly as accurate. It outputs all “simple” roots with an “attainable accuracy” of 2—6
correct digits:

3.00000454105053
2.99999545886518

2.00045075042739
.99977462490777 + 0.000390400606971

[EE

1.99977462490777 - 0.000390400606971
1.00241744569987 + 0.001775213463971
1.00241744569987 - 0.001775213463971
0.99905908264182 + 0.002817502965341
0.99905908264182 - 0.002817502965341
0.99704694315800

When multiplicities increases, the “attainable accuracy” of standard methods deteriorates even
further. This phenomenon can be demonstrated by applying root-finders on the powers of p(z),
such as

g(x) = [p(2)]° = (z =)P (x - 2)"¥(x - 3)"?

Our MULTROOT maintains its high accuracy:

THE PEJORATIVE CONDITION NUMBER: 2.06248
THE BACKWARD ERROR: 1.55e-015
THE ESTIMATED FORWARD ERROR: 6.41e-015

computed roots multiplicities

3.000000000000001 12

1.999999999999999 18

1.000000000000000 30

while the Matlab built-in root-finder ROOTS produces scattered results with huge forward
error, as shown in Fig. 1. All standard softwares output similar inaccurate results, due to the
“attainable accuracy” barrier they are subject to.

3 T T T T
i T
+ +
+
+ +
2r + B
+
+
+ +
1 +
L + i
i +
4
+
H +
S
g
g o I + + + B
=3
g
E L +
L
1k + + 4
+
- +
+
+
2L + i
+ +
+
+ +
-3 1 + ES +

real part

Figure 1: Roots of ¢(z) = (z — 1)3(x — 2)'8(x — 3)'2 computed by Matlab built-in root-finder
ROOTS

By design, MULTROOT calculates a complete factorization (2) of the polynomial p(z) in (1).
Let 21, -+, 2z, be computed roots with multiplicities ¢1,---,¥¢,, respectively. The results of
MULTROOT are ezact roots/multiplicities of another polynomial p(x) near p(x)

Px) = pox" +p1a" P = Polr —z21)" (2 —)™
~ por” et e pn = pole—) (= zm)™ = pl(a)
with coefficient vectors
f) = (ﬁ(ﬁ"'vﬁn) ~ (p07"'7pn) = P
The backward error is a weighted distance between p and p
n pi Di 2
~ j j
P - pH = wj <— — T)
H w]Z::l "\po o
The forward error is the 2-norm difference between the root vector z = (z1,- -+, zy,) of p(z)
and the root vector x = (x1,- -, x,,) of p(x), assuming their components are properly ordered

to match roots. The pejorative condition number x measures the sensitivity of the roots with
respect to multiplicity preserving perturbation [Zeng 2003]. If p(x) and p(x) have the same
multiplicity structure £ = [(1,- -, {;,], then
-x|, <« p-5],,
|z=x], <« [p-2],
ignoring some higher order terms [Zeng 2003].

If the given polynomial p(z) is an ineract representation of the intended polynomial p(z),
with the same multiplicity structure of the computed polynomial p(z) and the exact roots

y = (y17 T 7ym)7 then
_ < 5
|2=v],=2[p-»],

4

as established in [Zeng 2003]. Since the intended polynomial p(x) is represented by p(z), we
estimate the forward error as

2l =],

If the multiplicity structure of the given polynomial can not be identified by GCDRoOT, then
MULTROOT automatically switches to the Matlab built-in roots command. In other words,
the results of MULTROOT are at least as trustworthy as the Matlab standard results of roots.

3 Description of modules

Matlab modules are in the form of so called M-files with the generic name module.m, where
module is the name of the module. The usage description of each module can be accessed
by the Matlab command “help module”. The package MULTROOT consists of the following
modules.

multroot Given the coefficient vector of a polynomial, multroot computes the distinct
roots, corresponding multiplicities, backward error, estimated forward root
error, and the pejorative condition number.

gcdroot Given the coefficient vector of a polynomial, gcdroot calculates the multi-
plicity structure of the polynomial and the initial root approximation.

pejroot Given the coefficient vector of a polynomial, its multiplicity structure and
initial root approximation, pejroot refines the distinct roots, calculates the
pejorative condition number and the backward error.

backsub Sub-module. Backward substitution for an upper-triangular linear system.

cauchymt Sub-module. It generates the Cauchy matrix of a polynomial.

forsub Sub-module. Forward substitution for a lower-triangular linear system.

hessqr Sub-module. Hessenberg QR decomposition.

hqgrt Sub-module. The orthogonal transformation in Hessenberg QR decomposi-
tion.

scalsq Sub-module. Scaled linear least squares solver.

sylmat Sub-module. It generates the Sylvester resultant matrix of three polynomials.

sylves Sub-module. It generates the Sylvester discriminant matrix of a polynomial.

gcdgn Sub-module. The Gauss-Newton iteration in GCD computation.

minsv Sub-module. Computing the smallest singular value and the associated right

singular vector of a matrix using an implicit inverse iteration.

The modules GCDROOT and PEJROOT can be used independently for expert users. GCDROOT
calculates the multiplicity structure and the initial root approximations, without reaching the
optimal root accuracy. PEJROOT is more than an accuracy refinement module. It is capable
of calculating the (roots of the) polynomial with a predetermined multiplicity structure that
is nearest to the given polynomial. This is particularly useful with polynomials that is near
different structures [Zeng 2003].

4 The test suit

In the very first issue of ACM Transaction on Mathematical Software in 1975, M. A. Jenkins
and J. F. Traub published Principles for testing polynomial zerofinding programs. Its conclusion
worths repeating here [Jenkins et al. 1975]:

We feel that the polynomial zerofinding area has reached a level of maturity
where good mathematical software does exist and criteria for discriminating be-
tween good and poor programs are reasonably well known. It seems to us a waste
of effort for someone to publish a new polynomial zerofinding program unless it is
at least competitive with the best of those available and/or it has important and
relevant features that published programs do not have. A requirement for publi-
cation of a new algorithm should be a thorough evaluation of the reliability and
efficiency of the program carried out by someone other than its author.

Since then, hundreds of more papers on root-finding [McNamee 1993] have been published.
The testing principles proposed by Jenkins and Traub are not always followed. Apparently,
benchmarks for testing polynomial root-finding programs are long overdue. In light of Jenkins-
Traub Principles, we searched the literature for test polynomials and made a comprehensive
test suit. Those polynomials have been used to test the robustness, stability, accuracy and
efficiency of root-finders by many researchers, such as in [Jenkins et al. 1975, Loizou 1983,
Brugnano et al. 1995, Dvorcuk 1969, Farmer et al. 1975, Goedecker 1994, Igarashi et al.1995,
Iliev 2000, Miyakoda 1989, Petkovic 1989, Stolan 1995, Toh et al. 1994, Uhlig 1999, Zeng 2003,
Zhang 2001].

Because polynomial roots of high multiplicities have been considered extremely difficult in root
finding, test polynomials we found in literature usually have very low multiplicities. Most of the
test polynomials in the literature possess root multiplicities no more than five. In contrast, our
MULTROOT program can easily calculate roots of multiplicities over 20. The module PEJROOT
can even handle multiplicities in hundreds. Therefore, we modified many of the polynomials
to set higher standard in testing our root-finder. A typical modification is to increase the
multiplicities via repeatedly multiplying an existing test polynomial to itself. For example,
from the polynomial
(2= 1)4 (@ — 2)*(z — 3)2(a — 4)

used by Dvoréuk [Dvorc¢uk 1969] and Farmer-Loizou [Farmer et al. 1975, Loizou 1983], we gen-
erate a series of polynomials

(@) = (x —D)*@ -2 @ -3)*@-2)* k=127

The same technique can be applied to the polynomials in our test suit to generate more test
problems.

The test suit consists of Matlab modules that generate test polynomials and their accurate
roots. The generic file name, like our root finding modules, is module.m. A call

>> [p, z] = module

returns the polynomial coefficient vector p and root/multiplicity matrix z in the format of
MULTROOT output, as in (4).

We list the test polynomials in Appendix A.

On all those test polynomials, especially those with multiple roots, our MULTROOT package
successfully outputs accurate root/multiplicity results near machine precision, and far beyond
the so-called “attainable accuracy”. To the best of our knowledge, there is no other method
that can accurately calculate multiple roots of those polynomials with high multiplicities,
with nearby multiple roots, or with inexact coefficients, such as 103-07, twin02-04, miyakO08,
triple02-04, inex03-04 and large04-05. In addition to its remarkable accuracy on multiple
roots, MULTROOT shows that it is at least as reliable, robust and stable as the standard
softwares on all the test polynomials in the suit.

A Appendix: List of the test polynomials

The following are modules that generates polynomials in the test suit. The module names are
in boldface, with i = y/—1.

1. The Jenkins-Traub test polynomials [Jenkins et al. 1975]
jtola a=10 pz)=(z—A)(z+A)(z—1)
jtolb a=10"1 p(z)=(z - A)(z+ A)(z - 1)
jto2 p(x) =(r—1)(x —2)...(x — 17)

jt03 p(z) = (— 0.1)(z — 0.001)...(z — 0.00000001)

jtod p(x) = (z —.1)3(z — .5)(x — .6)(z —.7)

jtos p(x) = (z — D)4z — .2)3(x — .3)%(z — .4)

jt06 p(z) = (z — .1)(x — 1.001)(z — .998)(z — 1.00002)(x — .99999)

(x
jtoTa a=10"19 p(z) = (z—.001)(z—.01)(z—.1)(x—.14+ai)(z—.1—ai)(z—1)(z—10)
jt07b a =107 p(x) = (z—.001)(z—.01)(z—.1)(x—.1+ai)(z—.1—ai)(x—1)(x—10)
jtord a=10"", p(z) = (z—.001)(z—.01)(z—.1)(z—.1+ai)(x—.1—ai)(x—1)(z—10)
jto8 p(z) = (x+1)°

jt09 p(z) = (2% —10720) (210 + 1020)

jtloa a=10% p(x)=(z—a)(r —a) (%)
jt1ob a =105 p(z) = (v — —a) (é)
jtloc a =10 p(z)=(r —a)(z —a) (%)

km

jtlla m =15, roots: e%', k=1—-m,---,m—1; O.Qe%i, k=m,---,3m
jtlla m =20, roots: e%i, k=1—-m,---,m—1; O.QB%i, k=m,---,3m
jtlla m =25, roots: e , k=1—-m,--- . m—1; O.QB%i,k:m,---,Z%m

2. The Uhlig test polynomials [Uhlig 1999]

uhligdl ¢ =0.01, pz)=(z—a*)(z—a)*
uhligd2 a =0.001, p(z)=(z —a)(z —a)?

uhlig0é3 p(x)

(=) () (- 30) (20 -4) (o)
(r=80)" (e 8) (e 30) (e -25-4) (o)

uhligos p(z) = (z+1)% (4 2)*

=

uhlig04d p(x)

3. The Goedecker’s test polynomials [Goedecker 1994]

(a) Fibocacci polynomials — f,(z) =2" —2" ! —--. —2z —1
fib05 Fibocacci polynomial, n = 5
fib10 Fibocacci polynomial, n = 10
fib15 Fibocacci polynomial, n = 15
fib20 Fibocacci polynomial, n = 20
fib30 Fibocacci polynomial, n = 30
fib50 Fibocacci polynomial, n = 10
fib100 Fibocacci polynomial, n = 100
fib150 Fibocacci polynomial, n = 150
(b) Squared Fibocacci polynomials [f,,(z)]?
fibsq04 squared Fibocacci polynomial, n =
fibsq08 squared Fibocacci polynomial, n = 8
fibsq16 squared Fibocacci polynomial, n = 16
fibsq24 squared Fibocacci polynomial, n = 24
fibsq32 squared Fibocacci polynomial, n = 32
fibsq48 squared Fibocacci polynomial, n = 48
(¢) The Legendre polynomials
lgd05 Legendre polynomial, n =5
lgd10 Legendre polynomial, n = 10
lgd15 Legendre polynomial, n = 15
lgd20 Legendre polynomial, n = 20
lgd24 Legendre polynomial, n = 24
lgd50 Legendre polynomial, n = 50
lgd100 Legendre polynomial, n = 100

4. Modifications of the Farmer-Loizou test polynomials. [Farmer et al. 1975, Loizou 1983,
Zeng 2003]

01 k=1, p

() = (z =)™ (z = 2)™((x —4)
02 k=2, px)=(z— 1% -2)% (@ —3)%(x—4)F
03 k=3, p)=(z— D% —-2)%(x-3)% @ —4)F
o4 k=4, plx)=(z-1)"(—-2)"((z = 4"
05 k=5 px)= (- 1% -2)%@-3)%*@—4)F

() (z —4)

06 k=6, p(z)=(r—1%@-2)%x-3)*x—-4
farloi0l p(z) = [(2® + 2 + 2)(2? + 2 + 3)]*

5. The Miyakoda test polynomial [Miyakoda 1989] and its modifications.

10.

miyak00
miyak02
miyak04
miyak08

p(x) = (z — 1.1 = 1.1i)*(z — 3.2 — 2.3i)%(z — 2.1 — 1.5¢)
square of miyak00
square of miyak02

square of miyak(04

The Petkovic test polynomials [Petkovic 1989].

petk01
petk02
petk03
petk04
petk05
petk06
petk07

henrici

p(a) = (z+1)*(z = 3)*(z — i)* (2 — 2z + 5)?

p(x) = (z — 1)*(z +i)*(z — 5i)*(z + 5i)*

p(z) = 70(x? — 2z + 3)2 (m — 2) (x+1)

p(r) = (2 = 3)(a + 1)7(@ — 20)*(a2 + 42+ 5)2(a? — 4z + 5)°

p(z) = (z — 3)%(z%* + 22 + 5)*(z + 1)?

p(z) = (v — 3)%(2® + 22 + 5)%(z + 1)*(z +14)?

p(z) = (x — 1)3(2? — 4z + 5)(2% + 25)?

p(x) = (z+4.1)(z+3.8)(z+2.05) (z+1.85)(x—1.95) (x—2.15) (x—3.9) (z—4.05)

The Brugnano-Trigiante test polynomials [Brugnano et al. 1995]

bt0l p
bt02 p
bt03 p

bt04 p(z)=(xr—1

)= (x— 1z +1)%(x+1i)3(x —i)3(z —2)

x) = (x —1)"%z - 2)*(z + i) (z — 1)

r) = (2% + 1)%(x — 0.5i)* (z + 0.51)*(x — 0.754)(x + 0.757)
)?

(z+ D4z —.5—i)(x—5+14)3(x—.5— .5i)%(x — .5+ .5i)?

The Iliev test polynomial [Iliev 2000] and its modifications.

iliev00
iliev01
iliev02
iliev03

p(@) = (z = 1)(z +2)*(z - 3)°
p(@) = (z - 1)*(z - 2)"(z - 3)°
p(@) = (z = 1)z - 2)%(z - 3)"
p(@) = (z = 1)%(z - 2)!%(z - 3)*

The Igarashi-Ypma test polynomials [Igarashi et al.1995].

igyp00
igyp01
igyp02a
igyp0Oab
igyp0Oab

z) = (zr —2.35)(x — 2.37)(x — 2.39)

r) = (r — 2.35)3(x — 2.56)

8, p(z)=(xr—10—10i)™(x + 1)~
7, p(z) = (x —10 — 10i)™(z + 1)'0-
3, px)=(xr—10—10§)™(x + 1)~

p
p

—~~

m
m =
m

The Toh-Trefethen test polynomials and modifications [Toh et al. 1994, Zhang 2001]

toh01

toh02

toh03
toh04

monic polynomial with roots w + isin M, k=-10,-9,---,9

20 x k
plx) = (1(23!)

19

k=0

monic polynomial with roots 0 _9-k p=1,2---,20
p(x) = (@ - 10/11)

toh05 monic polynomial with roots 27% k=0,1,---,19
toh06a p(z)=1+x+a%+ ..+ 2%

toh06b p(z) = (1 +x + 2%+ ... + 2'0)?

toh06c p(x)=(1+z+..+2°)?

11. Additional test polynomials proposed by the author [Zeng 2003].

(a) Polynomials with two nearby multiple roots 0.39 and 0.40.
twin0l k=4, p(z)=(x—0.39)%(x—0.4)*(x 4+ 0.2)
twin02 k=38, p(z)=(z—0.39)"(z — 0.4)"(z +0.2)
twin03 k=12, p(x) = (z —0.39)%(z — 0.4)*(x +0.2)%
twin04 k=16, p(x) = (z —0.39)%(z — 0.4)(x +0.2)%
(b) Polynomials with a cluster of three multiple roots p(x) = (z—0.9)"(z—1)"(z—1.1)*
triple01 (m,n,k) = (5,5,5)

triple02 (m,n, k) = (10,10, 10)
triple03 (m,n, k) = (18,10, 16)
triple04 (m,n, k) = (20,15, 10)

(c) The polynomial p(z)= (:E — %)5 (3: - %)3 (:E - %)2 with inexact coefficients!.
inex01 p(x) above with 10 digits accuracy in coefficients
inex02 p(x) above with 9 digits accuracy in coefficients
inex03 p(x) above with 8 digits accuracy in coefficients
inex04 p(x) above with 7 digits accuracy in coefficients
(d) Polynomials p.(z) = (z — 1 — &)?°(z — 1)?°(x 4 0.5)?° with decreasing «.
near01 p.(z) with € =0.1
near02 p.(z) with ¢ =0.01
near03 p.(z) with ¢ =0.001
(e) Power of the monic polynomial ¢(x) that is generated from simple roots 1, 1.2, —1+
Bi, =9+ 4i, -7+ .7, —4+ .90, £1.14, 9+ 4i, .6+ .64, .4+ .99, £.8 with
coefficients rounded up to 10 digits after decimal.
large01 polynomial ¢(z)
large02 square of large01
large03 square of large02
large04 square of large03
large05 square of large04

References

[Brugnano et al. 1995] Brugnanao, L. and Trigiante, D. 1995. Polynomial roots: the ultimate
answer? Linear Alg. and Its Appl., 225, 207-219.

IThe test polynomials in this category require manual adjustment of some control parameters of MULTROOT.
For details, see [Zeng 2003]

10

[Dvorcuk 1969] Dvorcuk, J. 1969. Factorization of a polynomial into quadratic factors by New-
ton method, Apl. Mat., 14, 54-80.

[Farmer et al. 1975] Farmer, M. R. and Loizou, G. 1975. A class of iteration functions for
improving, simultaneously, approximation to the zeros of a polynomial, BIT, 15, 250-258.

[Goedecker 1994] Goedecker, S. 1994, Remarks on algorithms to find oots of polynomials,
SIAM J. Sci. Comput, 15, 1059-1063.

[Igarashi et al.1995] Igarashi, M. and Ypma, T. 1995. Relationships between order and effi-
ciency of a class of methods for multiple zeros of polynomials, J. Comput. Appl. Math.,
Vol. 60, 101-113.

[Lliev 2000] Iliev, A. I. 2000. A generalization of Obreshkoff-Ehrlich method for multiple roots
of algebraic, trigonometric and exponential equations, Math. Balkanica, 14, 17-18.

[Jenkins et al. 1975] Jenkins, M. A. and Traub J. F. 1975. Principles for testing polynomial
zerofinding programs, ACM Trans. Math. Software, 1, 26-34.

[Loizou 1983] Loizou, G. 1983. Higher-order iteration functions for simultaneously approxi-
mating polynomial zeros, Intern. J. Computer Math., 14, 45-58.

[McNamee 1993] McNamee, J. 1993. A bibliography on roots of polynomials, J. Comput. Appl.
Math., 47, 391-394.

[Miyakoda 1989] Miyakoda, T. 1989. Iterative methods for multiple zeros of a polynomial by
clustering, J. Comput. Appl. Math., 28, 315-326.

[Petkovic 1989] Petkovié, M. 1989. Iterative Methods for Simultaneous Inclusion of Polynomial
zeros, Lecture Notes in Mathematics, 1387, Springer-Verlag,

[Stolan 1995] Stolan, J. A. 1995. An improved Siljak’s algorithm for solving polynomial equa-
tions converges quadratically to multiple zeros, J. Comput. Appl. Math., 64, 247-268.

[Toh et al. 1994] Toh, K. C. and Trefethen, L. N. 1994. Pseudozeros of polynomials and pseu-
dospectra of companion matrices, Numer. Math., 68, 403-425.

[Uhlig 1999] Uhlig, F. 1999. General polynomial roots and their multiplicities in O(n) memory
and O(n?) time, Linear and Multilinear Algebra, 46, 327-359.

[Zeng 2003] Zeng, Z. 2003. Computing multiple roots of inexact polynomials, to appear, can
be accessed at http://www.neiu.edu/~zzeng/Papers/zroot.ps.

[Zhang 2001] Zhang, H. 2001. Numerical condition of polynomials in different forms, Flec.
Trans. Numer. Anal., 12, 66-87.

Zhonggang Zeng

Department of Mathematics
Northeastern Illinois University
Chicago, 1L 60625

email: zzeng@neiu.edu

11

