
ApaTools: A Software Toolbox for Approximate

Polynomial Algebra

Zhonggang Zeng∗

March 12, 2007

Abstract

Approximate polynomial algebra becomes an emerging area of study in recent years
with a broad spectrum of applications. In this report, we present a software toolbox
entitled ApaTools that consists of basic algorithms in approximate polynomial alge-
bra. Those algorithms form a foundation for developing more advanced numerical and
symbolic methods in computational algebra.

1 Introduction

Approximate polynomial algebra emerges as a growing area of study in recently years. With
rich theories and abundant symbolic algorithms being in place for commutative algebra and
algebraic geometry, numerical and hybrid computing methods appear to have a solid founda-
tion for development. Many robust numerical and numeric-symbolic algorithms have been
developed for solving polynomial systems [1, 5, 7, 9, 11], univariate factorization [15, 16],
univariate GCD [13], multivariate GCD [4, 17, 18], computing the dual bases and multiplic-
ity structure of polynomial ideals [2, 3], multivariate factorization [4, 17], and polynomial
elimination [14], etc. Those algorithms have a broad spectrum of applications in scientific
computing robotics, image processing, computational biology and chemistry, and so on.

We present ApaTools, a software toolbox for approximate polynomial algebra in this re-
port. This toolbox includes Matlab and Maple implementations of basic algorithms, utility
procedures and test suites. Those modules can be either used directly in applications or
as building blocks for more advanced computing methods. Algorithms implemented in
ApaTools rely heavily on matrix computations, particularly matrix rank-revealing.

∗Department of Mathematics, Northeastern Illinois University, Chicago, IL 60625, USA, Research sup-
ported in part by NSF under Grant DMS-0412003, email: zzeng@neiu.edu.

1

One of the main difficulties for numerical computation in polynomial algebra is the frequent
ill-posedness which occures when a problem has a discontinuous solution respect to data.
Those ill-posed problems are not directly suitable for floating point arithmetic since the
solutions are infinitely sensitive to rounding errors. This difficulty can often be overcome by
seeking the approximate solution that is formulated based on the three principles of backward

nearness, maximum co-dimension and minimal distance [13, 16, 19] that will be elaborated
in §2.

2 Exact and approximate polynomial algebra

Conventional symbolic computation assume both data and arithmetic are exact. In practical
applications, problem data are more often to be perturbed. As a result, exact solutions of
those inexact problems may not serve the practical purposes. Alternatively, an approximate

solution is intended to approximate the underlying exact solution before the problem is
perturbed. The comparison can be seen in the following examples.

Example 1 Exact and approximate GCD. The following polynomial pair has an exact
GCD gcd (f, g) = x2 − 2xy + 3z:

f(x, y, z) = 513

217
x

3
z − 127

311
x

2
z
2 − 1026

217
x

2
yz + 254

311
xyz

2 − 1539

217
z
3,

g(x, y, z) = 213

131
x

2
yz − 59

77
x

4 − 426

131
xy

2
z + 118

77
x

3
y + 639

131
yz

2 − 177

77
x

2
z.

When polynomials are represented with 8-digit precision in coefficients in Maple

f̃(x, y, z) = 2.3640553x3z − 0.40836013x2z2 − 4.7281106x2yz + 0.81672026xyz2 − 1.2250804z3,

g̃(x, y, z) = 1.6259542x2yz − 0.76623377x4 − 3.2519084xy2z + 1.5324675x3y + 4.8778626yz2 − 2.2987013x2z.

The exact GCD degrades to gcd (f̃ , g̃) = 1. The approximate GCD within ε, as calculated
by our Maple module MvGCD for 10-7 < ε < 10-2,

gcd
ε
(f̃ , g̃) = 0.99999999x2 − 2.0000000xy + 3.0000000z

is an accurate approximation to the underlying exact GCD. 2

Example 2 Exact and approximate univariate factorization. Univariate factoriza-
tion in complex field C is equivalent to root-finding. Consider univariate polynomial

p(x) = x200 − 400 x199 + 79500 x198 + . . . + 2.04126914035338 · 1086 x100 − 3.55467815448396 · 1086 x99 +

. . . + 1.261349023419937 · 1053 x2 − 1.977831229290266 · 1051 x + 1.541167191654753 · 1049 (1)

≈ (x − 1)80(x − 2)60(x − 3)40(x − 4)20 (2)

with coefficients in hardware precision (16-digits). Using the coefficient vector of p as
input, the standard Matlab root-finder outputs a cluster of 200 roots as shown in Figure 1.
In contrast, our Matlab module UvFactor calculates an approximate factorization:

2

−5 0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

real part

im
ag

ina
ry

 p
ar

t

Figure 1: Matlab results for the polynomial (1)

>> [F,res,cond] = UvFactor(p);

THE CONDITION NUMBER: 2.57705

THE BACKWARD ERROR: 7.62e-016

THE ESTIMATED FORWARD ROOT ERROR: 3.93e-015

FACTORS

(x - 4.000000000000008)^20

(x - 2.999999999999994)^40

(x - 2.000000000000002)^60

(x - 1.000000000000000)^80

The approximate factors calculated by UvFactor approximate the underlying factors in (2)
with 15 correct digits. In exact sense, however, the perturbed polynomial p has only linear
factors corresponding to the root cluster in Figure 1. 2

Both examples show the effect of ill-poseness on inexact problems. Since the solution struc-
ture can be completely altered by an infinitesimal error on data, it may not be meaningful
to compute the exact solution of a perturbed ill-posed problem. Therefore, we need to for-
mulate an approximate solution for the given problem in order to remove the ill-posedness.
Using polynomial factorization as an example, we elaborate the formulation process below.

Associating monic polynomial p(x) = x4 +p1x
3 +p2x

2 +p3x+p4 of degree 4 with coefficient
vector [p1, p2, p3, p4] ∈ C

4 and defining norm ‖p‖ =
√

|p1|2 + · · ·+ |p4|2, the set of all
polynomials possessing a factorization (x−z1)

1(x−z2)
3 with roots z1 6= z2 form a manifold

Π(1, 3) of codimension 2. On the other hand, manifold Π(1, 3) is in the closure of manifold
Π(1, 1, 2) of codimension 1 since (x− z1)

1(x− z2 + ε)1(x− z2 + ε′)2 −→ (x− z1)
1(x− z2)

3

when ε, ε′ −→ 0. Likewise Π(1, 1, 2) ⊂ Π(1, 1, 1, 1) ≡ C4, and the five manifolds form a
stratification as shown in Figure 2.

Π(4)

Π(2,2)

Π(1,3)

Π(1,1,1,1)Π(1,1,2)

codimension

3 2 1 0

Figure 2: Stratification of manifolds of degree
4 polynomials, with “−→” denoting “in the
closure of”

When polynomial p = (x− z1)
1(x− z2)

3 ∈ Π(1, 3)
is perturbed as p̃, the original factoring structure
(1, 3) is lost since p̃ ∈ Π(1, 1, 1, 1) ≡ C4. However,
structure (1, 3) can still be recovered from p̃ since
Π(1, 3) is the manifold of highest codimension

passing through the ε-neighborhood of p̃ for ε

satisfying

‖p − p̃‖ < ε < inf
{

‖p̃ − q‖
∣

∣ q ∈ Π(2, 2) ∪ Π(4)
}

.

After identifying Π(1, 3), we define the approximate factorization of p̃ within ε as the
exact factorization of p̂ = (x− ẑ1)

1(x− ẑ2)
3 that is the nearest polynomial to p̃ in Π(1, 3).

With this formulation, computing the approximate factorization of p̃ or p is a well-posed
problem, and the roots ẑ1 and ẑ2 of p̂ are approximation to the intended roots z1 and
z2 of p with error bounded by a structure preserving condition number [16].

Generally, the algebraic problems are often ill-posed because the set of problems whose solu-
tions possessing a distinct structure form a manifold of positive codimension, and perturba-
tions generically pushes a given problem away from the manifold. Our strategy starts with

3

formulating the approximate solution of an ill-posed algebraic problem following a “three
strikes” principle to remove the discontinuity:

Backward nearness: The approximate solution to the given (inexact) problem P̃ is
the exact solution of a nearby problem P̂ within ε.

Maximum codimension: The nearby problem P̂ is in the manifold Π of highest
codimension among all manifolds passing through the ε-neighborhood of P̃ .

Minimum distance: Problem P̂ is the nearest point in manifold Π to the given
problem P̃

Following these principles, we can formulate the approximate polynomial GCD, the approx-
imate matrix Jordan Canonical Form, the approximate irreducible factorization of polyno-
mials, etc., as well-posed and often well-conditioned problems, so that it becomes feasible
to calculate such approximate solutions using floating point arithmetic. More importantly,
this formulation breaks the computation into two optimization process: maximizing the
codimension of manifolds followed by minimizing the distance to the manifold, leading to a
two-staged strategy for designing robust algorithms:

Stage I: Calculating the solution structure by finding the nearby manifold Π of highest
codimension.

Stage II: Solving for the approximate solution by minimizing the distance from given
problem to manifold Π.

The main mechanism at Stage I is matrix rank-revealing, while Stage II relies on solving
nonlinear least squares problems.

3 Matrix computation and and matrix building tools

Finding the structure of the approximate solution at Stage I almost always involve matrix
rank-revealing, whereas the minimization at Stage II can be accomplished using the Gauss-
Newton iteration. For those considerations, the base level modules in ApaTools include
matrix builders, rank-revealing tools, and the Gauss-Newton iteration routines.

Polynomials with a certain degree bound form a vector space P with a monomial basis
{p1, · · · , pn} corresponding to a term order. The designated term order can be considered
a linear mapping

Ψ : x
j1
1 x

j2
2 · · ·xj`

` −→ pk

that forms an isomorphism between P and C
n. Let Ψ1 : P1 −→ C

m and Ψ2 : P2 −→ C
n

be isomorphisms and L : P1 −→ P2 be a linear transformation. Then there is a matrix
A ∈ Cn×m that makes the following diagram commute:

P1
L

−−−→ P2

Ψ1

y

x

Ψ-1
2

C
m A

−−−→ C
n

Matrix A = [a1, · · · , am] can then be genearated column-by-column in the loop as follows:

4

for j = 1, 2, · · · , m do

– p = Ψ-1
1 (ej)

– q = L(p)

– aj = Ψ2(q)

end do

Here ej is the j-th canonical vector in Cm, namely the j-th column of the m × m

identity matrix. Implementation of software modules for isomorphisms between polynomial
vector spaces and Cn constitutes matrix building tools in ApaTools.

For instance, let Pk denote the vector space of polynomials with total degree less than or
equal to k. For a fixed polynomimal f , polynomial multiplication with f is a linear
transformation Lf : Pn −→ Pm

Lf(g) = f · g ∈ P
m for all g ∈ P

n (3)

that corresponds to a convolution matrix Cn,m(f). In ApaTools, we include a convenient
module LinearTransformMatrix as a generic matrix builder for any linear transformation
between vector spaces of polynomials. The user need provide a subroutine for the linear
transformation as input for LinearTransformMatrix. Using the linear transformation in
(3) as an example, we can write a simple Maple procedure for Lf with f as an input
parameter:

> PolynMultiply := proc(g::polynom, x::{name,list}, f::polynom);

return expand(f*g)

end proc:

The convolution matrix C2,3(f) for f(x, y) = x+2y +3 can then be generated by a simple
call:

> T := LinearTransformMatrix(PolynMultiply,[x+2*y+3],[x,y],2,3);

T :=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3 0 0 0 0 0

1 3 0 0 0 0

2 0 3 0 0 0

0 1 0 3 0 0

0 2 1 0 3 0

0 0 2 0 0 3

0 0 0 1 0 0

0 0 0 2 1 0

0 0 0 0 2 1

0 0 0 0 0 2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

In this example, the input PolynMultiply is the procedure name for Lf , [x+2*y+3] is
the list parameters for PolynMultiply besides [x,y] that stands for the list of variables,
and 2, 3 are the degree bounds for the vector spaces P

n and P
m respectively.

5

With matrices being constructed, rank-revealing is frequently applied in approximate poly-
nomial algebra. As a example, a polynomial pair (f, g) ∈ Pm × Pn having a nontrivial
GCD can be written as f = uv and g = uw where u = gcd (f, g) with cofactors v and
w. Consequently, we have fw − gv = 0, or equivalently a homogeneous system of linear
equations

[

Cn-k,m+n-k(f), Cm-k,m+n-k(g)
]

[

w

−v

]

=

[

0

0

]

where v and w are coefficient vectors of v and w respectively. As a result,
finding the GCD structure is equivalent to computing the rank of the Sylvester matrix
[

Cn-k,m+n-k(f), Cm-k,m+n-k(g)
]

.

Another example is numerical elimination. For given polynomials f and and g in variables
x and y, if there are polynomials p and q such that variable x is eliminated from
polynomial h = p · f + q · g, then

∂x(pf + qg) =
[

(∂xf) + f · ∂x

]

p +
[

(∂xg) + g · ∂x

]

q = 0 (4)

Since mapping p −→
[

(∂xf) + f · ∂x

]

p is a linear transformation, equation (4) can be
converted to a homogeneous system of linear equations in matrix-vector form

M

[

p

q

]

= 0

that becomes a rank-revealing and kernel-finding problem for the elimination matrix M .

In approximate polynomial algebra, we seek the approximate rank and the approximate

kernel of a matrix, in contrast to seeking exact rank and kernel in exact polynomial algebra.
Following the same “three-strikes” principle, the approximate rank and kernel of a matrix
A ∈ Cm×n are the exact rank and kernel of a nearby matrix B ∈ Cm×n. This matrix B

is the nearest matrix to A on the manifold Πk that has the highest codimension among
manifolds Π1, Π2, · · · passing through an ε-neighborhood of A, where Πj is the set of all
m × n matrices with rank j. Approximate rank/kernel can be efficiently computed using
numerical rank-revealing algorithms [6, 8] that are implemented as modules of ApaTools.

4 Nonlinear least squares and the Gauss-Newton iteration

The minimization at Stage II is a nonlinear least squares problem that can be solved using
the Gauss-Newton iteration on an overdetermined system of equations in the form of

f(z) = 0 for f : C
n −→ C

m, z ∈ C
n, m ≥ n. (5)

We seek the least squares solution ẑ satisfying
∥

∥f(ẑ)
∥

∥

2
= min

z∈Cn

{

‖f(z)
∥

∥

2}

with a proper norm ‖ · ‖. Let J(z) be the Jacobian of f(z). Then the minimum occurs
at [16]

J(ẑ)∗f(ẑ) = 0

6

where (·)∗ denotes the Hermitian transpose of matrix (·).

If f(z) is analytic, the Moore-Penrose inverse J(ẑ)+ of J(ẑ) exists, the minimum ‖f(ẑ)‖
is small, and the initial iterate z0 is close to ẑ, then the Gauss-Newton iteration

zk+1 = zk − J(zk)
+f(zk), k = 0, 1, · · · (6)

converges to ẑ [16].

The Gauss-Newton iteration is extensively used in ApaTools. A typical case is computing
the approximate GCD: For given polynomial pair p and q with degrees m and n

resectively, we seek a polynomial triplet (û, v̂, ŵ) such that

‖(p, q) − (ûv̂, ûŵ)‖2 = min
deg(u)=k, deg(uv)=deg(p), deg(uw)=deg(q)

{

‖(p, q) − (uv, uw)‖2
}

.

Let p, q, u, v, and w be the coefficient vectors of p, q, u, v, and w respectively, then
the overdetermined system is constructed to have the least squares solution to uv − p = 0
and uv − q = 0 along with a proper scaling equation on u. This system can be written
in matrix-vector form as

f(u,v,w) = 0 for f(u,v,w) =

r∗u− 1
Ck,m(v)u− p

Ck,n(w)u− q

 (7)

where Cj,l(h) denotes the convolution matrices corresponding to the linear transformation
Lh : g −→ h · g ∈ Pl on the vector space all polynomials g ∈ Pj (see §3) and r is a
predetermined random vector. The Jacobian can be easily constructed as

J(u,v,w) =

r∗

Ck,m(v) Cm-k,m(u)
Ck,n(w) Cn-k,n(u)

 .

The Gauss-Newton iteration (6) can thus be applied accordingly.

It is essential to formulate the overdetermined system f(z) = 0 such that the Jacobian
J(ẑ) is injective by having enough equations. As a result, the Moore-Penrose inverse J(ẑ)+

exists and the Gauss-Newton iteration is well-defined in a neighborhood of ẑ. Moreover,
the norm

∥

∥J(ẑ)+
∥

∥ serves as a condition number of the approximate solution [13, 16, 19].

We provide a generic blackbox module GaussNewton for the general purpose Gauss-Newton
iteration. This module requires the user to provide a routine for computing function f(z)
in (5), a routine for computing the Jacobian J(z) and an initial iterate z0 as its input.
Then GaussNewton carries out the Gauss-Newton iteration and output the least squares
solution ẑ along with the residual ‖f(ẑ)‖2. As a convenient option, the Maple version of
GaussNewton can forgo the requirement of providing Jacobian routine by computing J(z)
with Maple symbolic manipulation.

Using the above example of GCD computation, the generic Gauss-Newton module needs
only a user defined subroutine for computing f(z) that can be as simple as

7

> GcdFunc := proc(z, m, n, p, q, r)

local F, u, v, w;

u, v, w := z[1..m], z[m+1..m+n], z[m+n+1..-1];

F := <LinearAlgebra[DotProduct](r,u)-1, Convolution(u,v)-p, Convolution(u,w)-q>;

return F[1..-1,1];

end proc:

Here, the Maple routine GcdFunc returns the vector value of f(z) from input vector z

consists of coefficients of u, v and w, along with parameters m, n, p, q, r representing
the length of u, the length of v, coefficient vectors p, q and r, respectively. The
command Convolution(u,v) and Convolution(u,w) produces coefficient vectors of poly-
nomial products u · v and u · v respectively by ApaTools module Convolution. Then
the Gauss-Newton iteration can be carried out by a simple call of GaussNewton:

> p, q := PolynomialTools[CoefficientVector](x^5-x^3+5*x^2-6*x+10,x), # get coef. vectors p, q

PolynomialTools[CoefficientVector](2*x^4+x^2-6,x);

> r := Vector([.4,0,.2]): # define scaling vector r

> z0 := Vector([1.99,0.01,1.01, 4.99,-3.01,0,.99, -3.01,0,1.99]): # initial guess for u, v, w

> z,res := GaussNewton(GcdFunc,z0,[3,4,p,q,r],[1e-9,9,true]): # Gauss-Newton iteration

Gauss-Newton step 0, residual = 8.00e-02

Gauss-Newton step 1, residual = 2.01e-04

Gauss-Newton step 2, residual = 3.16e-09

Gauss-Newton step 3, residual = 4.44e-16

The approximate GCD and cofactors can then be retrived from the result of the iteration:

> CoefficientVector2UnivariatePolynomial(z[1..3],x);

CoefficientVector2UnivariatePolynomial(z[4..7],x);

CoefficientVector2UnivariatePolynomial(z[8..-1],x);

2.000000000000000 + 3.1779793 × 10
−17 x + 1.000000000000000 x2

4.999999999999999 − 3.000000000000000 x − 1.530197036 × 10
−16 x2

+ 0.9999999999999998 x3

−2.999999999999999 + 2.54808329 × 10
−17 x + 2.000000000000000 x2

that are accurate approximation to the exact GCD u = x2+2, cofactors v = x3−3x+5 and
w = 2x2 − 3. Notice that the Jacobian routine is not necessary as input for GaussNewton.
This type of generic routines enables fast implementation of experimental algorithms.

5 ApaTools overview

1. Base level tools

• LinearTransformMatrix: A generic module for constructing the matrix associ-
ated with a given linear transformation between vector spaces of polynomials, as
described in §3.

• GaussNewton: A generic module for carrying out the Gauss-Newton iteration as
described in §4.

2. Matrix computation tools

8

• NulVector: The module for computing the smallest singular value and the cor-
responding left and right singular vectors. This module can be used to determine
whether a matrix is rank deficient in approximate sense, and to serve as a sub-
module for ApproxiRank that computes the approximate rank and approximate
Kernel.

• ApproxiRank: The module for computing the approximate rank rankθ (A) and
approximate kernel Kθ (A) of a matrix A within a given threshold θ. Here
the approximate rank is defined as

rankθ (A) = min
‖B−A‖2<θ

rank (A)

and the approximate kernel

Kθ (A) = K (B) for ‖B − A‖2 = min
rank(C)=rankθ(A)

‖C − A‖2.

Module ApproxiRank is efficient when the nullity of A is low. The standard
singular value decomposition (SVD) may be more suitable if the approximate
rank of A is around one half of the column dimension.

• ApproxiJCF: The module for computing the approximate Jordan Canonical Form
(JCF) of a given matrix A within a threshold ε. Computing the exact Jordan
Canonical Form is a ill-posed problem that requires exact data with symbolic
computation. The approximate JCF is defined according to the same “three
strikes” principle and computed with a two-staged algorithm elaborated in §2.
As a result, module ApproxiJCF is capable of computing the JCF accurately even
if the matrix is perturbed [19].

3. Univariate polynomial tools:

• UvGCD: The module for computing the approximate greatest common divisor
gcd

θ
(f, g) of univariate polynomial pair (f, g) within a given threshold θ with

definition as follows [13].

Let P be the vector space of polynomial pairs (p, q) satisfying deg(p) ≤ deg(f)
and deg(q) ≤ deg(g). Then Πj =

{

(p, q) ∈ P | deg(gcd (p, q)) = j
}

is a manifold
of codimension k in P associated with the metric topology induced by the vector
2-norm for j = 0, 1, · · · . Let Πk be the highest codimension manifold among
Π0, Π1, · · · containing a polynomial pair within distance θ of (f, g). Then the
approximage GCD gcd

θ
(f, g) is the exact GCD of pair (p, q), where (p, q) is

the nearest polynomial pair on the manifold Πk to the given pair (f, g).

Module UvGCD accepts input polynomial pair (f, g) and threshold θ (optional)
and outputs u = gcd

θ
(f, g), cofactors v and w along with the residual

‖(f, g)− (uv, uw)‖, where the norm ‖ · ‖ is either the vector 2-norm chosen by
users or the default weighted 2-norm.

9

• ExtendGCD: The module for computing a polynomial (p, q) such that pf +qg =
gcd

θ
(f, g) for given polynomial f and g using the output of UvGCD. The

extended GCD can be applied to transforming matrices of polynomial entries,
and in particularly, to computing the Smith Normal Form [12, 18],

• UvFactor: The module for computing an approximate factorization

p0(x − z1)
m1(x − z2)

m2 · · · (x − zk)
mk

for a given polynomial p(x), as shown in Example 2. The factors with non-
trivial multiplicities mj > 1 can be calculated accurately by UvFactor without
extending the machine precision even if the coefficients of p(x) are perturbed
[16].

4. Multivariate polynomial tools

• MvGCD: The module for computing the approximate GCD of a given pair of mul-
tivariate polynomials. The formulation of the multivariate approximate GCD is
the same as the univariate case. The computation requires applying UvGCD re-
peatedly in determining the GCD structure before calling GaussNewton for solving
a least squares problem that finding the distance from the given polynomial pair
to a GCD manifold.

• SquarefreeFactor: The module for computing an approximate squarefree fac-
torization of a given multivariate polynomial p. Here, again, the notion of the
approximate squarefree factorization is formulated using the “three-strikes” princi-
ple. Module SquarefreeFactor produces two types of squarefree factorizations:
a staircase squarefree factorization

(p1)
1(p2)

2 · · · (pk)
k

where p1, · · · , pk are coprime, or a flat-type squarefree factorization

f1 · f2 · · ·fk

where fj = pjpj+1 · · · pk. Each pi or fj is “squarefree”, namely it has no
repeated nontrivial factors of its own.

• MultiplicityStructure: The module for computing the multiplicity structure
of a given polynomial system

f1(x1, · · · , xs) = 0
...

ft(x1, · · · , xs) = 0

(8)

at a given zero x∗ = (x∗
1, · · · , x∗

s).

10

Let ∂j denote a differential monomial

∂j ≡ 1

j1! · · · js!

∂j1+···+js

∂x
j1
1

· · · ∂x
js

s

for j = [j1, · · · , js] N
s .

A sequence of complex numbers a =
{

αj | j ∈ Ns
}

corresponds to a differential
functional a[x∗] defined as

a[x∗](f) =
∑

j∈Ns

αj∂jf(x∗)

for any polynomial f in the ideal I = 〈f1, · · · , ft〉. The vector space Dx∗(I) ≡
{

a[x∗]
∣

∣ a[x∗](f) = 0 for all f ∈ 〈f1, · · · , ft〉
}

is called the dual space of ideal
I at x∗. The dimension of the dual space Dx∗(I) is the multiplicity of x∗

as a zero to the system (8). The dual space itself constitutes the multiplicity
structure of the system (8) at zero x∗ [10].

The module MultiplicityStructure calculates the multiplicity, a basis for the
the dual space along with other invariants such as breadth, depth and Hilbert
function [3] even if the system and zero are inexact.

• PolynomialEliminate: The module for computing polynomials p, q and h

such that h = pf + qg belongs to a specified elimination ideal generated by
polynomials f and g. For given f and g in variables x1, · · · , xs, in other
words, PolynomialEliminate eliminates a specified variable xj in h = pf + qg

by solving the differential equation

∂

∂xj

(pf + qg) = 0

via module ApproxiKernel on a sequence of matrices that are generated by mod-
ule LinearTransformMatrix. Combined with module MvGCD, this elimination
tool is particularly useful in solving polynomial systems whose solutions contain
nonzero dimentional components [14].

References

[1] D. Bates, J. D. Hauenstern, A. J. Sommese, and C. W. Wampler, Bertini:

Software for Nmerical Algebraic Geometry. http://www.nd.edu/∼sommese/bertini,
2006.

[2] D. J. Bates, C. Peterson, and A. J. Sommese, A numerical-symbolic algorithm

for computing the multiplicity of a component of an algebraic set, J. of Complexity, 22
(2006), pp. 475–489.

[3] B. Dayton and Z. Zeng, Computing the multiplicity structure in solving polynomial

systems. Proceedings of ISSAC ’05, ACM Press, pp 116–123, 2005.

11

[4] S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi, Approximate factorization

of multivariate polynomials via differential equations. Proc. ISSAC ’04, ACM Press, pp
167-174, 2004.

[5] T. Gao and T.-Y. Li, MixedVol: A software package for mixed volume computation,
ACM Trans. Math. Software, 31 (2005), pp. 555–560.

[6] T.-L. Lee, T. Y. Li, and Z. Zeng, A rank-revealing method with updating, down-

dating and applications, Part II. submitted, 2006.

[7] T.-Y. Li, Solving polynomial systems by the homotopy continuation method, Handbook
of Numerical Analysis, XI, edited by P. G. Ciarlet, North-Holand, Amsterdam (2003),
pp. 209–304.

[8] T. Y. Li and Z. Zeng, A rank-revealing method with updating, downdating and ap-

plications, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 918–946.

[9] A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Poly-

nomials, World Scientific Pub., Hackensack, NJ, 2005.

[10] H. J. Stetter, Numerical Polynomial Algebra, SIAM, 2004.

[11] J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial

systems by homotopy continuation, ACM Trans. Math. Software, (1999), pp. 251–276.

[12] J. Verschelde and Y. Wang, Computing dynamic output feedback laws, IEEE Trans.
Automatic Control, (2004), pp. 1552–1571.

[13] Z. Zeng, The approximate GCD of inexact polynomials. Part I. Preprint, 2007.

[14] Z. Zeng, A polynomial elimination method for symbolic and numerical computation.
Preprint, 2007.

[15] Z. Zeng, Algorithm 835: Multroot – a Matlab package for computing polynomial roots

and multiplicities, ACM Trans. Math. Software, 30 (2004), pp. 218–235.

[16] , Computing multiple roots of inexact polynomials, Math. Comp., 74 (2005),
pp. 869–903.

[17] Z. Zeng and B. Dayton, The approximate GCD of inexact polynomials. II: A mul-

tivariate algorithm. Proceedings of ISSAC’04, ACM Press, pp 320-327. (2006).

[18] , The approximate GCD of inexact polynomials. Part II. Preprint, 2007.

[19] Z. Zeng and T. Y. Li, A numerical method for computing the Jordan Canonical

Form. Preprint, 2007.

12

