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The Numerical Greatest Common Divisor of Univariate
Polynomials

Zhonggang Zeng

Abstract. This paper presents a regularization theory for numerical com-
putation of polynomial greatest common divisors and a convergence analysis,
along with a detailed description of a blackbox-type algorithm. The root of the
ill-posedness in conventional GCD computation is identified by its geometry
where polynomials form differentiable manifolds entangled in a stratification
structure. With a proper regularization, the numerical GCD is proved to be
strongly well-posed. Most importantly, the numerical GCD solves the problem
of finding the GCD accurately using floating point arithmetic even if the data
are perturbed. A sensitivity measurement, error bounds at each computing
stage, and the overall convergence are established rigorously. The computing
results of selected test examples show that the algorithm and software appear
to be robust and accurate.

1. Introduction

As one of the fundamental algebraic problems with a long history, finding the
greatest common divisor (GCD) of univariate polynomials is an indispensable com-
ponent of many algebraic computations besides being an important problem in its
own right. The classical Euclidean Algorithm has been known for centuries [12,
p.58] and the problem is well studied in computer algebra, where algorithms are
developed using exact arithmetic with exact data. These algorithms are not suit-
able for practical numerical computation because computing GCD is an ill-posed
problem in the sense that it is infinitely sensitive to round-off error and data pertur-
bations. A tiny error in coefficients generically degrades the GCD into a meaningless
constant. The central problem of this paper is: How, and why, can we still recover
the lost GCD accurately using the inexact data and floating point arithmetic?

For this purpose, we study the root of the ill-posedness by presenting the ge-
ometry of the polynomial GCD problem: The collection of polynomial pairs whose
GCD’s share a fixed positive degree forms a differential manifold of a positive
codimension, and these manifolds entangle in a stratification structure in which a
manifold is in the closure of manifolds of lower codimensions. The ill-posedness of
the GCD problem lies in the dimension deficit of the GCD manifold from which a
polynomial pair will pushed away by arbitrary perturbations.
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Taking advantage of the geometric properties, we study the numerical GCD
formulated by Corless, Gianni, Trager and Watt [6] as well as Karmarkar and
Lakshman [22] by establishing a comprehensive regularization theory of numerical
GCD. We prove that numerical GCD generalizes the traditional notion of GCD
and, when the data are sufficiently accurate, the numerical GCD uniquely exists
and is Lipschitz continuous, thereby making it strongly well-posed and computable
using floating point arithmetic. Most importantly, the numerical GCD solves the
central problem of this paper by approximating the exact GCD of the underlying
polynomials hidden in data perturbation.

Building upon the thorough study on the theory of numerical GCD, we fur-
ther establish a detailed analysis of the algorithm proposed by the author [41] for
computing the numerical GCD, and prove the Numerical GCD Convergence The-
orem. The algorithm is implemented using the code name uvGCD as part of the
comprehensive package ApaTools [42] for approximate polynomial algebra.

As mentioned above, GCD-finding is one of the basic operations in algebraic
computation with a wide range of applications that include engineering problems
such as graphics and modeling, robotics, computer vision, image restoration, con-
trol theory, system identification [1, 11, 15, 21, 26, 29, 32, 34, 36], as well as
other branches of mathematics and computer science such as simplifying rational
expressions, partial fraction expansions, canonical transformations, mechanical ge-
ometry theorem proving [5, 13, 47], hybrid rational function approximation [18],
and decoder implementation for error-correction [3]. A robust GCD-finder is also
crucial to root-finding studies when multiple roots are present [9, 27, 41]. In recent
years, substantial effort has been spent on developing algorithms for computing the
numerical GCD of inexact polynomials. These pioneering works include resultant-
based algorithms [6, 10, 30], optimization strategies [4, 22], modifications of the
Euclidean Algorithm [2, 16, 27, 31], root grouping [28, 36], QR factorization
[7, 39], and low rank approximations [19, 20, 37, 38]. Several methods have been
implemented as part of Maple SNAP package [17] that include QuasiGCD, Ep-
silonGCD and QRGCD. Particularly in [6], Corless, Gianni, Trager and Watt
propose a novel, albeit unfinished, approach that includes the use of singular value
decomposition to identify the GCD degree and several possible strategies for cal-
culating the GCD factors including solving least squares problems.

In the context of polynomial root-finding, we developed a new special case al-
gorithm for computing the GCD of a polynomial and its derivative. This algorithm
is briefly described in [41] as an integral component of Algorithm MultRoot [40]
that calculates multiple roots of a polynomial with high accuracy without using
multiprecision arithmetic even if the coefficients are perturbed. Due to the scope of
the paper [41], that algorithm is narrowly featured without in-depth analysis of the
problem regularity, algorithm convergence, error analysis, extensions, applications,
or comprehensive testing/experiment. Our numerical GCD algorithm employs a
successive Sylvester matrix updating process for identifying the maximum degree
of the numerical GCD along with an initial approximation to the GCD factors. Then
the Gauss-Newton iteration is applied to certify the GCD and to refine the poly-
nomial factors via solving a regular quadratic least squares problem. Those new
strategies apparently fill the main gaps in previous works and is mentioned in a
recently published textbook:
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“This numerical common gcd algorithm ... appears to be the
most efficient and reliable algorithm for that purpose; I have
seen it too late to include it in the text.” H. J. Stetter, Numerical
Polynomial Algebra [33, p.223]

The software uvGCD has been tested rigorously and extensively. As sample
test results shown in §11, uvGCD is substantially more robust and accurate than
the existing packages. The complexity of our method is O(n3) for the combined
degree n of the given polynomials.

The main theorems in this paper appear to be new, including GCD Manifold
Theorem, GCD Extension Theorem, Numerical GCD Regularity Theorem, Numer-
ical GCD Approximation Theorem and Numerical GCD Convergence Theorem.

2. Difficulties of finding GCD in numerical computation

Computing polynomial GCD is a typical “ill-posed problem” whose numerical
solutions are generally unattainable using conventional methods, even if the method
is among the most celebrated in the history. The hypersensitivity of such problems
can be illustrated in a simple example:

Example 2.1. Consider a pair of polynomials

p(x) = x10 + 31
3 x9 + 10

3 x8 + x+ 10

q(x) = x10 + 71
7 x9 + 10

7 x8 − 6
7x− 60

7

They can be factored as (x + 10)(x9 + x8

3 + 1) and (x + 10)(x9 + x8

7 − 6
7 ) respec-

tively. There is no difficulty for a common computer algebra system like Maple to
find the GCD using symbolic computation:

> gcd(x^10+(31/3)*x^9+(10/3)*x^8+x+10,x^10+71*x^9/7+10*x^8/7-6*x/7-60/7);

x+ 10

However, the GCD quickly degrades from x + 10 to a constant simply by re-
placing the fractional numbers in the coefficients with floating point values at the
simulated hardware precision of 10 digits1:

> gcd(x^10+10.33333333*x^9+3.333333333*x^8+x+10.,

x^10+10.14285714*x^9+1.428571429*x^8-.8571428571*x-8.571428571);

1.000000000

The constant 1 is, as a matter of fact, the correct GCD in exact sense from the
given (perturbed) coefficients, and the nontrivial GCD x + 10 is lost from a tiny
perturbation in data. This is the ill-posed nature of GCD for being discontinuous
with respect to its coefficients.

For hundreds of years, the classical Euclidean Algorithm has been the method
for GCD finding. However, it can easily fail in numerical computation. The Eu-
clidean Algorithm is a recursive process of polynomial division

(2.1) f = q · g + r

from a polynomial pair (f, g) to obtain the quotient q and the remainder r. As-
sume the degree of g is no larger than that of f without loss of generality, and
initialize f0 = f , f1 = g. The Euclidean Algorithm

(2.2) fj = qj · fj+1 + fj+2, j = 0, 1, . . .

1The test is carried out using Maple 12. Other versions of Maple may yield different results
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generates a remainder sequence f2, f3, . . . that terminates at a scalar multiple of the
GCD of f and g. The Euclidean Algorithm and its modifications remain the method
of choice for GCD computation in symbolic computation for exact polynomials. The
following example illustrates why the Euclidean Algorithm behaves poorly in the
presence of data error or round-off.

Example 2.2. Consider polynomials appeared in Example 2.1;

(2.3)
f(x) = (x+ 10)(x9 + x8

3 + 1) = x10 + 31
3 x9 + 10

3 x8 + x+ 10,
g(x) = x+ 10.

with their GCD equals to g(x). The (exact) Euclidean Algorithm stops at one step

since f(x) = (x9 + x8

3 + 1) · g(x) + 0. However, if the coefficients of f are inexact
with a perturbation of a magnitude at the simulated hardware precision, say

f̃(x) = x10 + 10.33333333x9 + 3.333333333x8 + x+ 10.

the one-step Euclidean Algorithm involves a polynomial division

f̃(x) = (x + 10)(x9 + .33333333x8 + .000000033x7 − .00000033x6+

+.0000033x5 − .000033x4 + .00033x3 − .0033x2 + .033x + 0.67) + 3.3

Far from getting a zero, the remainder becomes 3.3, and the Euclidean Algorithm
produces a constant GCD with a large difference from x + 10 we are looking for,
even though the data error is tiny. �

The numerical instability of the Euclidean Algorithm is inherent from polyno-
mial division (2.1), which is equivalent to linear system for the coefficients of q and
r. Using the f and g in (2.3) as an example again, equation (2.1) can be written as

(2.4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
10 1

10
. . .

. . . 1
10 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

q9
q8
..
.
q0
r0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
10.33333333
3.333333333

0

.

.

.
0
1
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Perturbations in coefficients of f and/or g are magnified by the large condition
number 1.1×1010 of the 10×10 matrix in (2.4), as shown by the nonzero remainder
computed in Example 2.2.

The question is: Can we accurately compute the GCD, say x+ 10 of p(x) and
q(x) in Example 2.1, using the inexact data and floating point arithmetic? The
examples above indicate the futility of computing the exact GCD in this situa-
tion. Instead, we compute the numerical greatest common divisor to be formulated
in §5. Such a numerical GCD will be proven insensitive with a finite GCD condition
number. More importantly, the numerical GCD approximates the underlying exact
GCD, say x+ 10, with an error in the order of data perturbation, as confirmed by
our Maple software uvGCD result:

> u, v, w, res := uvGCD(x^10+10.33333333*x^9+3.333333333*x^8+x+10,

x^10+10.14285714*x^9+1.428571429*x^8-.8571428571*x-8.571428571,x,1E-8):

> u/lcoeff(u,x) # scale the numerical GCD to be monic

9.999999998 + 1.000000000x

The numerical GCD within 10−8 is ũ = x+9.999999998, an accurate approximation
to the exact GCD x+ 10.
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3. Preliminaries

The fields of complex numbers are denoted by C. The n dimensional complex
vector space is denoted by Cn, in which vectors are columns denoted by boldface
lower case letters such as a, u, v2, etc, with 0 being a zero vector whose dimension
can be understood from the context. Matrices are represented by upper case
letters like A and J . For every vector or matrix (·), the notation (·)� represents
the transpose and (·)H the Hermitian adjoint (i.e. conjugate transpose) of (·). We
find it convenient to use Matlab notation “;” to stack (column) vectors as

[3; −2; 4] ≡
⎡
⎣ 3

−2
4

⎤
⎦ ≡ [3, −2, 4]�, [u;v] ≡

[
u
v

]
≡ [u�,v�]�,

The norm ‖v‖ of a vector v is the Euclidean norm ‖v‖ =
√
vHv throughout this

paper. The matrix norm ‖A‖ of A is induced from the vector norm ‖A‖ =
max
‖x‖=1

‖Ax‖. We also use the Frobenius norm [14, Page 55] denoted by ‖ · ‖F
in some occasions.

All vector spaces are in C. A vector space spanned by vectors v1, . . . ,vn is de-
noted by span{v1, . . . ,vn}. The notation dist (S,T ) stands for the distance between
two subspaces S and T in a larger vector space [14, p. 76]. The dimension of the
kernel of matrix A is nullity (A ), namely the nullity of A.

For any matrix A of m×n with m ≥ n, there are n singular values [14, §2.5.3]

σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0.

of A with σ1(A) = ‖A‖. We shall also denote the same singular values in reversed
order

0 ≤ σ−1(A) ≤ σ−2(A) ≤ · · · ≤ σ−n(A) = ‖A‖.
Singular value σ−1(A) is the smallest distance from A to a matrix that is rank-
deficient by one. Likewise, singular value σ−2(A) is the smallest distance from A to
a matrix that is rank-deficient by two, and so on. The matrix

A+ = (AHA)−1AH

exists uniquely as the Moore-Penrose inverse of A when σ−1(A) > 0. It is straight-
forward to verify that

σ−1(A) =
∥∥A+

∥∥−1
= min

‖x‖=1
‖Ax‖.

This minimum is attainable at the right singular vector y of A corresponding
to σ−1(A). Namely ‖Ay‖ = σ−1(A).

In this paper, polynomials are in C in a single variable x. The ring of such
polynomials is denoted by C[x]. A polynomial is denoted by lower a case letter,
say f , v, or p1, etc. A polynomial

(3.1) p = ρ0 + ρ1x+ ρ2x
2 + · · ·+ ρnx

n

is of degree n if ρn �= 0, or the degree is −∞ if f(x) ≡ 0. We shall denote the degree
of a polynomial p by deg(p).

For an integer n, the collection of polynomials with degrees less than or equal
to n form a vector space

Pn =
{
p ∈ C[x]

∣∣ deg(p) ≤ n
}
.
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Thus the dimension of Pn is

dim(Pn) =

{
0 for n < 0

n+ 1 for n ≥ 0.

Throughout this paper, we use the monomial basis {1, x, x2, . . . , xn} for Pn, in
which every polynomial p can be written in the form of (3.1) and corresponds to a
coefficient vector

p = [ρ0; . . . ; ρn] ∈ Cn+1.

Notice that ρn = 0 is possible, and the same polynomial p can be embedded in
the space Pm ⊃ Pn with a coefficient vector of higher dimension. Throughout this
paper, if a letter (say f , g, q1) represents a polynomial, the same letter in boldface,
say f , g, q1, is its coefficient vector within a vector space Pn that is clear from the
context. The norm ‖a‖ of polynomial a ∈ Pn is defined as the Euclidean norm ‖a‖ of
its coefficient vector a.

We denote the vector space of polynomial pairs (p, q) ∈ Pm × Pn as

Pm,n =
{
(p, q) ∈ C[x]2

∣∣ deg(p) ≤ m, deg(q) ≤ n
}
,

and its subset formed by polynomial pairs of degrees equal to m and n, respectively,
as

Pm,n =
{
(p, q) ∈ Pm,n

∣∣ deg(p) = m, deg(q) = n
}
.

For every polynomial pair (p, q), a greatest common divisor or GCD of (p, q) is
any polynomial u of the highest degree that divides both p and q. Notice that
we do not require a GCD to be monic here to avoid scaling a polynomial by a
tiny leading coefficient in computation. In this setting, GCD’s are not unique and
two GCD’s of the same polynomial pair differ by a nonzero constant multiple. We
define an equivalence relation ∼ between two polynomials in the sense that f ∼
g if f = α g for a constant α �= 0. Thus the collection of all GCD’s of a polynomial
pair (p, q) forms a ∼-equivalence class, denoted by gcd (p, q), which is unique in the
quotient ring C[x]/ ∼.

The collection of polynomial pairs with a specified GCD degree k is denoted
by

(3.2) Pk
m,n =

{
(p, q) ∈ Pm,n

∣∣ deg
(

gcd (p, q)
)
= k

}
If u ∈ gcd (p, q), then polynomials v = p/u and w = q/u are called the cofactors
of polynomial pair (p, q). The distance between two polynomial pairs, or generally
the distance between two polynomial arrays (p1, . . . , pl) and (q1, . . . , ql) is naturally
derived from the polynomial norm

(3.3)
∥∥(p1, . . . , pl)− (q1, . . . , ql)

∥∥ =
√
‖p1 − q1‖2 + . . .+ ‖pl − ql‖2.

Let Ψn : Pn −→ Cn+1 denote the isomorphism that maps a polynomial a in
Pn to its coefficient vector a in Cn+1, namely Ψn(a) = a. For a fixed f ∈ Pn and
any g ∈ Pm, the polynomial multiplication f g is a linear transformation

Fm : Pm −→ Pm+n with Fm(g) = f · g for every g ∈ Pm.
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Let f = [φ0; φ1; . . . ; φn] be the coefficient vector of f . The matrix for the linear
transformation Fm is called a convolution matrix

(3.4) Cm(f) =

m+1︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ0

.

.

.
. . .

φn φ0

. . .
.
.
.

φn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For polynomials u ∈ Pj and v ∈ Pk with coefficient vectors u and v respectively,

w = Ck(u)v = Cj(v)u = Ψj+k(u · v)

is the coefficient vector w ∈ Cj+k+1 of polynomial product w = u v ∈ Pj+k.
The classical Sylvester matrices can be derived naturally. Let (p, q) be a given

pair of polynomials of degrees m and n respectively, if u is a GCD of (p, q) with
cofactors v and w. Then p · w − q · v = uvw − uwv = 0, namely

(3.5) Cn−j(p)w− Cm−j(q)v ≡
[
Cn−j(p) | Cm−j(q)

] [ w
−v

]
= 0.

for any degree j ≤ deg(u). In other words, matrix
[
Cn−j(p) | Cm−j(q)

]
is rank-

deficient if j ≤ deg(u), and the GCD problem is equivalent to the rank/kernel
problem of such matrices.

With p(x) = p0 + p1x+ . . .+ pmxm ∈ Pm, q(x) = q0 + q1x+ · · ·+ qnx
n ∈ Pn,

and j = 1, 2, . . . ,min{m,n}, the j-th Sylvester matrix of (p, q) in Pm,n is defined
as

(3.6) Sj(p, q) =
[
Cn−j(p) | Cm−j(q)

]
=

n−j+1︷ ︸︸ ︷ m−j+1︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p0

p1

. . .

.

.

.
. . . p0

pm p1

. . .
.
.
.

pm

q0

q1
. . .

.

.

.
. . . q0

qn q1

. . .
.
.
.
qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Notice that, for convenience of discussion, we extend the use of the Sylvester ma-
trices to allow degrees deg(p) < m and/or deg(q) < n in (3.6). For the special case
of j = 1 and (p, q) ∈ Pm,n, the matrix S1(p, q) is the standard Sylvester matrix
in the literature whose determinant being zero is frequently used as an equivalent
statement for the existence nontrivial GCD. Moreover, the GCD degree can be
identified from the nullity of Sylvester matrices in the following lemma.

Lemma 3.1. Let (p, q) be a polynomial pair in Pm,n and Sj(p, q) be the j-th
Sylvester matrix of (p, q) in Pm,n. Then the degree of gcd (p, q) equals to k if and
only if

(3.7) nullity (Sj(p, q) ) = dim
(
Pk−j

)
= k − j + 1

for j = 1, . . . , k and nullity (Sj(p, q) ) = 0 for j = k + 1, . . . ,min{m,n}. In partic-
ular,

(i) nullity (S1(p, q) ) = deg
(

gcd (p, q)
)
; and
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(ii) nullity (Sk(p, q) ) = 1 with the kernel of Sk(p, q) being spanned by the vector
[w;−v] formed by the cofactors v and w of (p, q).

Proof. Let v and w be the GCD cofactors of (p, q). The kernel of Sj(p, q) can
be identified from the identity (xiw) · p − (xiv) · q = 0 for i = 0, 1, . . . , k − j if
j ≥ k. �

The identity (3.7) in various forms are well known in the literature (see e.g.
[10, 24, 30]), while the algorithm in [45, 41] takes advantage of the special
case nullity (Sk(p, q) ) = 1 so that the cofactors v and w can be solved from the
homogeneous linear system

(3.8) Sk(p, q)
[

w
−v

]
= 0.

Then the GCD can be determined via solving the linear system

(3.9) Ck(v)u = p and Ck(w)u = q

for polynomial u.

4. Geometry of GCD and its ill-posedness

In this section, we study the geometry of the polynomial GCD problem, the
root of its ill-posedness, and the reason why it is not hypersensitive in a restricted
domain in which it becomes numerically computable. The regularization theory that
follows later is also derived from the differentiable manifolds and the stratification
structure formed by the collections of polynomials pairs with common GCD degrees.

Let (p, q) ∈ Pm,n be a polynomial pair with a particular GCD u∗ ∈ Pk and
cofactors v∗ and w∗. For any vector h ∈ Ck+1 with hHu∗ = β �= 0, this GCD triplet
(u∗, v∗, w∗) of (p, q) is the unique solution to the equation

(4.1) fh(u, v, w) = [β; p; q]

for u ∈ Pk, v ∈ Pm−k+1, w ∈ Pn−k+1, where

(4.2) fh(u, v, w) =

⎡
⎣ hHu

Ck(v)u
Ck(w)u

⎤
⎦

with its Jacobian

(4.3) Jh(u, v, w) =

⎡
⎣ hH

Ck(v) Cm−k(u)
Ck(w) Cn−k(u)

⎤
⎦

in which a matrix block such as Ck(v) is the convolution matrix (3.4) corresponding
to the linear transformation L : g ∈ Pk −→ v · g ∈ Pn.

Lemma 4.1. Let polynomials u ∈ Pk, v ∈ Pm−k, w ∈ Pn−k and the vector
h ∈ Ck+1 with hHu �= 0. Then the matrix Jh(u, v, w) defined in (4.3) is injective
if and only if there exists no non-constant polynomial that divides u, v and w
simultaneously.

Proof. Let a ∈ Pk, b ∈ Pm−k and c ∈ Pn−k be arbitrary polynomials whose
coefficient vectors a ∈ Ck+1, b ∈ Cm−k+1 and c ∈ Cn−k+1 satisfy

(4.4)

⎡
⎣ hH

Ck(v) Cm−k(u)
Ck(w) Cn−k(u)

⎤
⎦

⎡
⎣ −a

b
c

⎤
⎦ = 0.

The matrix Jh(u, v, w) is injective if a = b = c = 0. Equation (4.4) is equivalent to

(4.5) hHa = 0, b · u− a · v = 0, c · u− a · w = 0.
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If u and v are co-prime, then bu− av = 0 in (4.5) implies a = ru for a polynomial
r. Then deg(a) ≤ k = deg(u) leads to r being a constant. Therefore r = 0 due to
hHa = r(hHu) = 0. Namely, a = 0, which results in b = c = 0 from (4.5).

Assume u and v are not co-prime, namely d ∈ gcd (u, v) is not a constant but
1 ∈ gcd (d, w). Write u = d · u0 and v = d · v0. From bu − av = 0 in (4.5) we have
bu0 − av0 = 0 and thus u0 divides a since 1 ∈ gcd (u0, v0), and a = s · u0 for certain
polynomial s. Combining with cu− aw = 0 yields c · d− s ·w = 0 and thus s = t · d
for certain polynomial t. Consequently a = s ·u0 = t · d ·u0 = t ·u. The polynomial
t must be a constant because deg(a) ≤ deg(u). Moreover hHa = t(hHu) = 0 implies
t = 0 and thus a = 0, leading to b = c = 0 from (4.5). As a result, we have proved
Jh(u, v, w) is injective whenever u, v and w have no common non-constant factors.

Assuming there is a non-constant common factor e among u, v and w, we
now prove Jh(u, v, w) is rank-deficient. Write u = eu0, v = ev0 and w = ew0. If
hHu0 = 0, then Jh(u, v, w)[−u0;v0;w0] = 0 by a straightforward verification, and
thus Jh(u, v, w) is rank-deficient. Next we assume hHu0 �= 0. Let a = gu0, b = gv0
and c = gw0 for g = e− γ where γ = (hHu)/(hHu0). Then a ∈ Pk, b ∈ Pm−k, and
c ∈ Pn−k with bu−av = cu−aw = 0. The polynomial g �= 0 since e is non-constant,
and a = gu0 = du0 − γu0 = u− γu0, leading to hHa = hH(u− γu0) = 0 Therefore
a, b and c satisfy (4.5), implying Jh(u, v, w) is rank-deficient. �

Lemma 4.1 directly leads to the following injectiveness corollary for the Jaco-
bian (4.3) at a GCD and cofactors.

Corollary 4.2. Let (p, q) ∈ Pk
m,n. For almost all h ∈ Ck+1 and β ∈ C, there

exists a unique GCD u∗ ∈ gcd (p, q) with cofactor pair (v∗, w∗) satisfying (4.2), and
the Jacobian Jh(u, v, w) in (4.3) is injective at (u∗, v∗, w∗).

The following GCD Manifold Theorem provides the essential geometric prop-
erties of the GCD problem. We adopt a non-abstract notion of a differentiable
manifold from differential topology: A (complex) differential manifold of dimension
d is a subset that locally resembles the Euclidean space Cd. More specifically, a sub-
set Π ⊂ Pm,n is called a differentiable manifold of dimension d if, for every point
(p, q) ∈ Π, there is an open neighborhood Δ of (p, q) in Pm,n and a continuously
differentiable mapping g from Δ∩Π to an open subset Λ of Cd with a continuously
differentiable inverse g−1 : Λ −→ Δ ∩ Π. The differentiable mapping g is called a
local diffeomorphism for the manifold Π, and the codimension of Π is

codim(Π) = dim(Pm,n)− dim(Cd) = m+ n+ 2− d.

Theorem 4.3 (GCD Manifold Theorem). With respect to the metric topology
induced from the norm ‖ · ‖ in Pm,n, the subset Pk

m,n of Pm,n is a differentiable

manifold of codimension k. Moreover, GCD manifolds Pj
m,n ⊂ Pk

m,n if and only

if j ≥ k, and P0
m,n is open dense in Pm,n.

Proof. Let (p, q) ∈ Pk
m,n Then there exist a GCD û and its cofactor pair (v̂, ŵ)

that form the unique solution of the equation (4.1) for certain h ∈ Ck+1 and β ∈ C.
Let the column dimension (and rank) of Jh(u, v, w) be denoted as

l = (k + 1) + (m− k + 1) + (n− k + 1) = m+ n− k + 3.

By Corollary 4.2, there exist l rows of Jh(u, v, w) that are linearly independent.
By the Inverse Function Theorem [35, Theorem 3.7.3, p.52], the vector [u;v;w]
is locally a continuously differentiable (vector) function of l entries of the vector
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[β; p; q]. These l rows must include the first row since otherwise there would be
a contradiction that (p, q) has a unique GCD. Consequently, the vector [p;q] is
a continuously differentiable function g of its l − 1 components in a proper open
domain. This mapping g is a local diffeomorphism and the codimension of Pk

m,n

is thus (m+ n+ 2)− (l − 1) = k.
The manifold P0

m,n is of codimension zero and thus open in Pm,n. Conse-

quently, the manifold Pk
m,n is of positive codimension for k > 0 and Pm,n \ Pk

m,n

is open dense. The manifold P0
m,n =

⋂
k>0

(
Pm,n \ Pk

m,n

)
is thus open dense as

an intersection of finitely many open dense subsets.
Let (p, q) ∈ Pk

m,n, Pk′

m′,n′ ⊂ Pm,n and inf(r,s)∈Pk′
m′,n′

∥∥(p, q)−(r, s)
∥∥ = 0. Then

there is a sequence (pi, qi) = (ui·vi, ui·wk) ∈ Pk′

m′,n′ , i = 1, 2, . . . converges to (p, q),

where ui ∈ Pk′ is a GCD of (pi, qi). It is clear that m
′ = m and n′ = n since (pi, qi)

can not have lower degrees when i is sufficiently large. Because
{
(pi, qi)

}∞
i=1

is

bounded, the sequences
{
ui

}∞
i=1

,
{
vi
}∞
i=1

and
{
wi

}∞
i=1

can be chosen to be bounded
and thus can be assumed as convergent sequences to polynomials u ∈ Pk′ , v ∈ Pm−k′

and w ∈ Pn−k′ , respectively. Consequently, we have (p, q) = (u · v, u · w) and
thus u ∈ Pk′ since otherwise one would have a contradiction in deg(p) < m and
deg(q) < n. Therefore u ∈ Pk′ divides gcd (p, q). �

The ill-posedness of exact GCD can now be clearly explained: When a polyno-
mial pair (f, g) ∈ Pk

m,n for k > 0 is perturbed, generically the resulting polynomial

pair (f̃ , g̃) belongs to P0
m,n since Pk

m,n is dimension deficient and P0
m,n is open

dense in Pm,n. Consequently the GCD degree drops from k to 0 discontinuously,
degrading the exact GCD to a constant. On the other hand, Pk

m,n is a differen-
tiable manifold and the diffeomorphism (4.2) has a smooth inverse, indicating that
the GCD is not discontinuous if the perturbation is structure-preserving so that
(f̃ , g̃) remains in Pk

m,n.
Theorem 4.3 also provides an important geometric property: A small neigh-

borhood of a polynomial pair (p, q) intersect all the GCD manifolds Pj
m,n for

j ≤ k = deg
(

gcd (p, q)
)
. Furthermore, the residing manifold Pk

m,n has a distinct
identity to be given in Lemma 5.3.

5. The notion of numerical GCD

We study the numerical GCD for two simultaneous objectives: To eliminate the
ill-posedness of the exact GCD and to solve a specific problem of approximating
the GCD that is lost due to data perturbations and round-off errors. The precise
problem statement is as follows.

Problem 5.1 (The numerical GCD Problem). Let (p, q) be a given polynomial
pair that constitutes the available data containing a possible perturbation of small
magnitude from an underlying pair (p̂, q̂). Find the numerical GCD of (p, q), namely
a polynomial u of degree identical to deg

(
gcd (p̂, q̂)) with an accuracy

inf
û∈gcd (p̂,q̂)

∥∥u− û
∥∥ = O

(
‖(p, q)− (p̂, q̂)‖

)
.

We have regularized ill-posed problems by formulating a “numerical solution”
using a “three-strikes” principle [43, 44] that consists of backward nearness, max-
imum codimension and minimum distance. Namely, the numerical solution of the
problem is the exact solution of a nearby problem (backward nearness) that resides
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in the manifold of the highest codimension (maximum codimension) and has the
minimum distance to the given data (minimum distance).

We shall introduce the numerical greatest common divisor as a well-posed prob-
lem to make numerical computation feasible. As common in numerical computation,
the first and foremost requirement for computing numerical GCD is its backward
accuracy: The numerical GCD of a given polynomial pair (p, q) must be the exact
GCD of a “nearby” pair (p̃, q̃) with

∥∥(p, q) − (p̃, q̃)
∥∥ < ε for a specified threshold

ε > 0. However, a major distinction here is that (p̂, q̂) can not be required as the
“nearest” pair to (p, q), as shown in Example 5.2 below.

Example 5.2. Consider the univariate polynomial pair (p, q):

(5.1)

{
p(x) = (x2 − 3x+ 2) (x+ 1.0) + 0.01
q(x) = (x2 − 3x+ 2) (x+ 1.2)− 0.01

which is small perturbation of magnitude
√
0.0002 ≈ 0.01414 from a polynomial

pair with gcd (p, q) = x2 − 3x + 2 of degree 2. the nearest polynomial pair with a
nontrivial GCD is (p̂1, q̂1) where

p̂1 ≈ (x− 2.00002)(0.9990x2 − 0.00255 x− 1.0054)

q̂1 ≈ (x− 2.00002)(1.0011x2 + 0.2026 x− 1.1946)

with distance 0.00168. The GCD of (p̂1, q̂1) is of degree 1, not a meaningful ap-
proximation to the GCD of degree 2.

In fact, the nearest polynomial pairs with an GCD degree 2 to be approximately(
(x2 − 3.0001 x+ 1.9998)(1.0017 x+ 1.0026), (x2 − 3.0001 x+ 1.9998)(0.9982x+ 1.1973)

)
with larger distance 0.0111. If one searches the nearest polynomial pair without a
proper constraint, the actual GCD degree can be misidentified. �

It is easy to see from Example 5.2 that, if (p, q) is a polynomial pair with a
nontrivial GCD, then the pair (p, q) is closer to polynomial pairs with GCD of
lower degrees. This phenomenon is first reported in [6] where it is suggested to
seek the highest degree for the numerical GCD. Other than certain non-generic
exceptions as we shall see later, this degree requirement is consistent with a general
geometric constraint for regularizing ill-posed problems: The numerical GCD must
be an exact GCD of a nearby polynomial pair in the GCD manifold of the highest
codimension.

We shall call Pk
m,n the GCD manifold of degree k. A given polynomial pair

(p, q) has a distance to each of the GCD manifolds defined as

(5.2) θk(p, q) = inf
{∥∥(p, q)− (r, s)

∥∥ ∣∣∣ (r, s) ∈ Pk
m,n

}
,

By Theorem 4.3, those GCD manifolds form a stratification assuming m ≥ n:

(5.3) ∅ = Pn+1
m,n � Pn

m,n � · · · � P1
m,n � P0

m,n ≡ Pm,n,

where S denotes the closure of any set S. Consequently, for every (p, q) ∈ Pm,n,

0 = θ0(p, q) ≤ θ1(p, q) ≤ · · · ≤ θn(p, q).

Particularly, for (p, q) ∈ Pk
m,n,

(5.4) 0 = θ0(p, q) = · · · = θk(p, q) < θk+1(p, q) ≤ · · · ≤ θn(p, q)
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since k = deg(gcd (p, q)). The strict inequality in (5.4) holds because, by Lemma 3.1,
the singular value σ−1(Sk+1(p, q)) is strictly positive, while σ−1(Sk+1(r, s)) = 0 for
all polynomial pair (r, s) ∈ Pk+1

m,n .

Lemma 5.3. Let (p̂, q̂) ∈ Pk
m,n and J =

{
j
∣∣θj(p̂, q̂) = 0

}
. Then J ={

0, 1, . . . k }, namely k = maxJ . Furthermore, there exists a θ > 0 such that,

from any (p, q) ∈ Pm,n with η =
∥∥(p, q) − (p̂, q̂)

∥∥ < θ, the GCD degree k of (p̂, q̂)
is identifiable as

(5.5) k = max
{
j
∣∣ θj(p, q) < ε

}
for any ε in the interval (η, θ).

Proof. A straightforward verification from the GCD Manifold Theorem. �
When the given polynomial pair (p, q) is a small perturbation from (p̂, q̂) ∈

Pk
m,n, it can land in any of the GCD manifold Pj

m,n of lower or equal codimension
j ≤ k. However, the underlying GCD degree k distinguishes itself as the maximum
codimension

(5.6) k ≡ codim
(
Pk

m,n

)
= max

{
codim

(
Pj

m,n

) ∣∣ θj(p, q) < ε
}

of all GCD manifolds Pj
m,n with distance θj(p, q) < ε if the threshold ε satisfies

(5.7) θk(p, q) < ε < θk+1(p, q),

or the more stringent inequalities
∥∥(p, q)− (p̂, q̂)

∥∥ < ε < 1
2θk+1(p̂, q̂).

Revisiting Example 5.2, the polynomial pair (p, q) in (5.1) is perturbed from
P2

4,4, which is in the closure of P1
m,n. By our calculations,

θ1(p, q) ≈ 0.00168, θ2(p, q) ≈ 0.0111 and θ3(p, q) ≈ 0.45.

The desired GCD manifold P2
4,4 is the one that possesses the highest codimension

2 and passes through the ε-neighborhood of (p, q) for any ε ∈ (0.0111, 0.225).
In this paper, we assume the given polynomial pair (p, q) is a small perturbation

from the underlying pair (p̂, q̂) ∈ Pk
m,n, such that

∥∥(p, q) − (p̂, q̂)
∥∥ � θk+1(p̂, q̂),

and a threshold ε can be chosen in between and thus (5.7) holds. If the numerical
GCD of (p, q) is of the degree k satisfying (5.6), we can recover the underlying GCD
degree. Furthermore, the minimum distance from (p, q) to the GCD manifold Pk

m,n

can be reached at a pair (p̃, q̃) ∈ Pk
m,n. We can naturally designate the exact GCD

of (p̃, q̃) as the numerical GCD of (p, q).
The essential requirements of following numerical GCD definition are first dis-

covered by Corless, Gianni, Trager and Watt [6] in 1995, and formally proposed by
Karmarkar and Lakshman in 1996 [22].

Definition 5.4. Let (p, q) ∈ Pm,n and a threshold ε > 0. A numerical greatest
common divisor of (p, q) within ε is an exact GCD of (p̃, q̃) ∈ Pk

m,n where k satisfies

(5.5) and
∥∥(p̃, q̃) − (p, q)

∥∥ = θk(p, q). The ∼–equivalence class of all numerical
GCD’s of (p, q) is denoted by gcd

ε
(p, q). Namely gcd

ε
(p, q) = gcd (p̃, q̃).

The formulation of numerical GCD is consistent with the “three-strikes princi-
ple” which have been successfully applied to other ill-posed problems [41, 46].

Backward nearness: The numerical GCD of a given polynomial pair (p, q)
is the exact GCD of a nearby polynomial pair (p̃, q̃) within a specified
distance ε.
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Maximum codimension of the solution manifold: The nearby pair (p̃, q̃) resides
in the highest codimension manifold Pk

m,n among all the GCD manifolds
intersecting the “nearness” ε-neighborhood of the given pair (p, q).

Minimum distance to the solution manifold: The pair (p̃, q̃) is the nearest point
on the manifold Pk

m,n to the given pair (p, q).

The numerical GCD defined in Definition 5.4 extends the notion of GCD in the
sense that the exact GCD becomes a special case of the numerical GCD. When a
pair (p, q) possesses a nontrivial GCD, the numerical GCD gcd

ε
(p, q) and the exact

GCD gcd (p, q) are identical for all ε satisfying 0 < ε < θk+1(p, q).

Theorem 5.5 (GCD Extension Theorem). There exists a constant θ > 0 asso-
ciated with every polynomial pair (p̂, q̂) ∈ Pm,n possessing an exact GCD of degree
k such that, for every (p, q) ∈ Pm,n that is sufficiently close to (p̂, q̂), there exists
a numerical GCD of (p, q) within every ε ∈ (0, θ). This numerical GCD is unique
and is of the same degree k. Moreover,

lim
(p,q)→(p̂,q̂)

gcd
ε
(p, q) = gcd (p̂, q̂).

When (p, q) = (p̂, q̂) in particular, the numerical GCD of (p, q) within ε ∈ (0, θ) is
identical to the exact GCD of (p̂, q̂).

Proof. There is a minimum distance τ from all GCD manifolds having a positive
distance to (p̂, q̂). Let ξ be the minimum magnitude of nonzero coefficients of (p̂, q̂)
and let θ = 1

2 min{τ, ξ}. For any (p, q) with ‖(p, q) − (p̂, q̂)‖ < ε, the distance

θk(p, q) < ε and (5.5) holds, implying deg
(

gcd
ε
(p, q)

)
= deg

(
gcd (p̂, q̂)

)
. The set

S =
{
(f, g) ∈ Pm,n

∣∣ ‖(f, g)− (p, q)‖ ≤ ‖(p, q)− (p̂, q̂)|
}⋂

Pk
m,n

is bounded. Therefore there exists a convergent sequence (pi, qi) ∈ S converging to

(p∗, q∗) ∈ Pk
m,n such that limi→∞ ‖(pi, qi)− (p, q)‖ = θk(p, q). Since

‖(p∗, q∗)− (p̂, q̂)‖ ≤ ‖(p∗, q∗)− (p, q)‖+ ‖(p, q)− (p̂, q̂)‖ ≤ 2ε ≤ ξ,

hence (p∗, q∗) ∈ Pm,n. If (p∗, q∗) �∈ Pk
m,n, then θk(p∗, q∗) = 0 which lead to

deg
(

gcd (p∗, q∗)) > k by the GCD Manifold Theorem (Theorem 4.3), contradicting
the choice of θ ≥ 2τ . Consequently, the distance θk(p, q) is attainable as ‖(p, q)−
(p∗, q∗)‖, and a gcd

ε
(p, q) exists.

By Definition 5.4, the equivalence class gcd
ε
(p, q) = gcd (p̃, q̃) where the pair

(p̃, q̃) ∈ Pk
m,n, and∥∥(p̃, q̃)− (p̂, q̂)

∥∥ ≤
∥∥(p̃, q̃)− (p, q)

∥∥+ ∥∥(p, q)− (p̂, q̂)
∥∥ ≤ 2

∥∥(p, q)− (p̂, q̂)
∥∥.

Since Pk
m,n is a differentiable manifold and there is a local diffeomorphism that

maps (u, v, w) to (p, q) ∈ Pk
m,n with u ∈ gcd (p̃, q̃), we have

lim
(p,q)→(p̂,q̂)

gcd
ε
(p, q) = lim

(p̃,q̃)→(p̂,q̂)
gcd (p̃, q̃) = gcd (p̂, q̂)

and the theorem follows. �

6. Strong Hadamard well-posedness of numerical GCD

As introduced by Hadamard, a problem is well-posed (or regular) if its solution
satisfies existence, uniqueness, and certain continuity with respect to data. For solv-
ing a computational problem accurately using floating point arithmetic with fixed
hardware precision, the continuity must be Lipschitz so that the Lipschitz constant
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serves as the finite sensitivity measure, or otherwise the problem is still incom-
patible with numerical computation. For instance, polynomial roots are continuous
with respect to coefficients regardless of multiplicities. However, multiple roots are
not Lipschitz continuous and thus infinitely sensitive to coefficient perturbations,
rendering the root-finding problem extremely difficult until proper regularization
is applied [40, 41, 44]. Consequently, the well-posed problem is often defined in
recent literature as having a finite condition number [8]. To emphasize the require-
ment of finite sensitivity, we call the problem as strongly well-posed if the continuity
is Lipschitz.

We shall establish the strong Hadamard well-posedness of numerical GCD as
formulated in Definition 5.4. Particularly, we shall prove a strong well-posedness
in Lipschitz continuity. To this end, we need the following lemma to prove the
regularity of the numerical GCD.

Lemma 6.1. For an open subset Ω in Cn, let f : Ω −→ Cm be analytic with an
injective Jacobian J(z) at every z ∈ Ω. Assume f(Ω) is a differentiable manifold
in Cn. Then there is an open neighborhood Δ of every z in Ω and an open subet Σ
of f(z) in Cm such that, for every b ∈ Σ, there is a unique solution z∗ ∈ Δ to the
least squares problem

‖f(z∗)− b‖2 = min
y∈Ω

‖f(y)− b‖2.

There are also σ, γ > 0 such that the Gauss-Newton iteration

(6.1) zk+1 = zk − J(zk)
+ [f(zk)− b], k = 0, 1, · · ·

converges to z∗ from every initial iterate z0 ∈ Δ with

(6.2)
∥∥zk+1 − z∗

∥∥ ≤ σ
∥∥zk − z∗

∥∥+ γ
∥∥zk − z∗

∥∥2 ≤ μ
∥∥zk − z∗

∥∥
for k = 0, 1, 2, . . . with μ = σ + γ ‖z0 − z∗‖ < 1. Moreover, if ‖f(z∗)− b‖ = 0, the
convergence rate is quadratic with σ = 0.

Proof. This is basically a combination of Lemma 2 and Lemma 3 in [44] with a
minor variation form the statements of [44, Lemma 3] and the proof accordingly. �

We now state and prove the following regularity theorem of the numerical GCD.

Theorem 6.2 (Numerical GCD Regularity Theorem). The numerical GCD
problem is strongly well-posed. More specifically, for every polynomial pair (p̂, q̂) ∈
Pm,n, there is a neighborhood D of (p̂, q̂) in Pm,n and a constant θ > 0 such
that, for every (p, q) ∈ D and ε in the interval (‖(p, q) − (p̂, q̂)‖, θ), the following
assertions hold:

(i) (Existence) The numerical GCD gcd
ε
(p, q) exists.

(ii) (Uniqueness) gcd
ε
(p, q) is unique in Pm,n/ ∼.

(iii) (Lipschitz continuity) There is a constant α > 0 such that, for all (p1, q1),
(p2, q2) ∈ D, we have

‖(u1, v1, w1)− (u2, v2, w2)‖ < α
∥∥(p1, q1)− (p2, q2)

∥∥.
for certain u1 ∈ gcd

ε
(p1, q1) and u2 ∈ gcd

ε
(p2, q2) with cofactor pairs

(v1, w1) and (v2, w2) respectively.

Proof. The existence of gcd
ε
(p, q) = gcd (p̃, q̃) for (p, q) near (p̂, q̂) with (p̃, q̃) ∈

Pk
m,n is part of the GCD Extension Theorem. To prove the uniqueness and the

Lipschitz continuity, let fh(·, ·, ·) be as in (4.2) along with the Jacobian Jh(·, ·, ·)
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as in (4.3) with a proper choice of the scaling vector h. Then there is a unique

û ∈ gcd (p̂, q̂) along with cofactors v̂ and ŵ such that fh(û, v̂, ŵ) = [β̂; p̂; q̂] for every

scalar β̂ > 0. Applying Lemma 6.1 to fh, there is a neighborhoods Σ of [β̂; p̂; q̂)
and Δ of (û, v̂, ŵ) respectively such that for every [β; p; q] ∈ Σ, there is a unique
(ũ, ṽ, w̃) ∈ Δ that solves the least squares problem

‖fh(ũ, ṽ, w̃)− [β;p;q]‖ = min
(u,v,w)∈Pk×Pm−k×∈Pn−k

‖fh(u, v, w)− [β;p;q]‖.

Let (p̃, q̃) = (ũṽ, ũw̃). Then (p̃, q̃) ∈ Pm,n since we can assume that D is small
so that D ⊂ Pm,n. Thus (u, v, w) ∈ Pk × Pm−k × Pn−k and deg

(
gcd (p̃, q̃)

)
≥

deg(u) = k. Since Pk
m,n is the GCD manifold of the highest GCD degree near (p, q)

within ε, we have deg
(

gcd (p̃, q̃)
)
= k. Consequently, the uniqueness assertion holds.

Let [β; p̌; q̌] ∈ Σ and let (ǔ, v̌, w̌) be the least squares solution to fh(·, ·, ·) =
[β; p̌; q̌]. Apply one step of the Gauss-Newton iteration on fh(u, v, w) = [β; p̌; q̌]
from (ũ, ṽ, w̃) and denote

(6.3) [u1; v1; w1] = [ũ; ṽ; w̃]− Jh(ũ, ṽ, w̃)
+
(
fh(ũ, ṽ, w̃)− [β; p̌; q̌]

)
.

Combining (6.3) with [ũ; ṽ; w̃] = [ũ; ṽ; w̃] − Jh(ũ, ṽ, w̃)
+
(
fh(ũ, ṽ, w̃)− [β; p; q]

)
yields

∥∥[u1; v1; w1]− [ũ; ṽ; w̃]
∥∥ ≤

∥∥Jh(ũ, ṽ, w̃)+∥∥∥∥[p̌; q̌]− [p; q]
∥∥. By (6.2),∥∥[ǔ; v̌; w̌]− [ũ; ṽ; w̃]

∥∥
≤

∥∥[ǔ; v̌; w̌]− [u1; v1; w1]
∥∥+

∥∥[u1; v1; w1]− [ũ; ṽ; w̃]
∥∥

≤ μ
∥∥[ǔ; v̌; w̌]− [ũ; ṽ; w̃]

∥∥+
∥∥Jh(ũ, ṽ, w̃)+∥∥∥∥[p; q]− [p̌; q̌]

∥∥
Namely

∥∥[ǔ; v̌; w̌]− [ũ; ṽ; w̃]
∥∥ ≤

∥∥Jh(ũ, ṽ, w̃)+∥∥
1− μ

∥∥[p; q]− [p̌; q̌]
∥∥

where 0 < 1−μ < 1 for a sufficiently small Σ, leading to the Lipschitz continuity. �
Finding numerical GCD not only is a well-posed problem by the Numerical

GCD Regularity Theorem but also solves the problem of computing the GCD accu-
rately from perturbed data, as specified in Problem 5.1, by the following Numerical
GCD Approximation Theorem.

Corollary 6.3 (Numerical GCD Approximation Theorem). The numerical
GCD formulated in Definition 5.4 solves Problem 5.1. More specifically, under the
assumptions of Theorem 6.2, the numerical GCD gcd

ε
(p, q) satisfies the following

addition properties.

(iv) (Identical degrees) deg
(

gcd
ε
(p, q)

)
= deg

(
gcd (p̂, q̂)

)
= k.

(v) (Convergence) lim
(p,q)→(p̂,q̂)

gcd
ε
(p, q) = gcd (p̂, q̂).

(vi) (Bounded sensitivity)

lim sup
(p,q)→(p̂,q̂)

inf
u ∈ gcd

ε
(p, q), û ∈ gcd (p̂, q̂)

∥∥(u, v, w)− (û, v̂, ŵ)
∥∥

‖(p, q)− (p̂, q̂)‖(6.4)

≤ inf
h ∈ C

k+1, û ∈ gcd (p̂, q̂)
(ûv̂, ûŵ) = (p̂, q̂)

∥∥Jh(û, v̂, ŵ)+∥∥ < ∞

where (v, w) and (v̂, ŵ) are cofactor pairs of (p, q) and (p̂, q̂) respectively.
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The above theorem for numerical GCD substantially improves the similar result
in [45, Proposition 2] and justifies the definition

(6.5) κε(p, q) = inf
h ∈ C

k+1, u ∈ gcd
ε
(p, q)

‖(uv, uw) − (p, q)‖ = θk(p, q)

∥∥Jh(u, v, w)+∥∥

of the numerical GCD condition number [45, Definition 2] of (p, q) within ε. We
believe the sensitivity measure (6.4) is optimal.

The condition number κε(p, q) can be estimated as a by-product of numerical
GCD computation. Upon exit of the Gauss-Newton iteration (6.1), the last Jaco-
bian Jh(ui, vi, wi) is available along with its QR decomposition. Applying one step
of the null vector finder in [43, p.130] will yield an approximation of the smallest
singular value σmin of Jh(ui, vi, wi), while ‖Jh(ui, vi, wi)

+‖ = 1/σmin can substi-
tute for κε(p, q) as a good estimate.

By Definition 5.4, the GCD Extension Theorem, the Numerical GCD Regu-
larity Theorem and the Numerical GCD Approximation Theorem, we have now
established the strong Hadamard well-posedness, and validated the so-defined nu-
merical GCD for its intended objective of solving the numerical GCD Problem as
stated in Problem 5.1.

Lemma 4.1 provides an insight into the sensitivity of the numerical GCD by
specifying the necessary and sufficient condition for Jh(u, v, w) to be rank-deficient.
Computing the numerical GCD of (p, q) within ε is ill-conditioned if and only if
Jh(u, v, w) is “nearly” rank-deficient, namely u, v and w can be “nearly” divisible
by a nonconstant polynomial. Consequently, computing the numerical GCD of
(p, q) is not ill-conditioned even if it is also near a other GCD manifold as long
as the numerical GCD triplet u and cofactors v, w do not share an approximate
common divisor.

A typical ill-conditioned example can be constructed in the following example.
Example 6.4. Consider the following polynomial pair

(6.6)

{
pδ(x) = (x2 − 1)

[
(x− 1 + δ)(x4 + 1)

]
qδ(x) = (x2 − 1)

[
(x− 1− δ)(x3 + 2)

]
The GCD triplet consists of

uδ(x) = x2 − 1, vδ(x) = (x− 1 + δ)(x4 + 1), wδ(x) = (x− 1− δ)(x3 + 2).

For δ = 0, there is a common factor x − 1 among u0, v0 and w0. Or, x − 1
“nearly” divides all uδ vδ and wδ. Consequently, the pair (pδ, qδ) is ill-conditioned
for δ � 1. Our experiment with uvGCD indicates that the condition number
κε(pδ, qδ) ≈ 1.14

δ . �
Remark on formulations of numerical GCD. In 1985, Schönhage [31] first

proposed the quasi-GCD for univariate polynomials that needs to satisfy only the
backward nearness. Schönhage also assumes the given polynomial pair can be arbi-
trarily precise even though it is inexact. In 1995, Corless, Gianni, Trager and Watt
[6] proposed a ”highest degree” requirement of GCD in addition to Schönhage’s no-
tion. The same paper also suggests minimizing the distance between the given poly-
nomial pair to the set of pairs with certain GCD degree. In 1996/1998 Karmarkar
and Lakshman [22, 23] formally defined “highest degree approximate common
divisor problem” and explicitly included the requirements of backward nearness,
highest degree, and minimum distance. It should be noticed that the understand-
ing of numerical GCD can be significantly different in other works. Notably there is
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another notion of numerical GCD as the nearest GCD within a certain given degree
[19, 20].

7. The initial numerical GCD approximation

The GCD degree can be identified by the nullity of the Sylvester matrices (cf.
Lemma 3.1). Likewise, the GCD manifold of maximum codimension specified in
the definition of numerical GCD can be revealed by the numerical nullity of the
Sylvester matrices. The following lemma provides a necessary condition for such a
GCD manifold to be nearby.

Lemma 7.1. Let (p, q) be a polynomial pair in Pm,n and ε > 0. If the distance
θk(p, q) between (p, q) and a GCD manifold Pk

m,n is less than ε, then

(7.1) σ−i

(
Sj(p, q)

)
< ε ·

√
max{m,n} − j + 1

for i = 1, 2, . . . , k−j+1 and j ≤ k, where σ−i

(
Sj(p, q)

)
is the i-th smallest singular

value of the j-th Sylvester matrix for (p, q) in Pm,n.

Proof. Since θk(p, q) < ε, there exists (r, s) ∈ Pk
m,n such that

∥∥(p, q)−(r, s)
∥∥ < ε.

By Lemma 3.1, singular values σi

(
Sj(r, s)

)
= 0 for i = 1, 2, . . . , k − j + 1. From

the linearity Sj(p, q) = Sj(r, s)+Sj(p− r, q− s) of the Sylvester matrices (3.6) and
[14, Corollary 8.6.2]

σi

(
Sj(p, q)

)
≤ σi

(
Sj(r, s)

)
+
∥∥Sj(p− r, q − s)

∥∥ ≤
∥∥Sj(p− r, q − s)

∥∥
F

=
√
(n− j + 1)‖p− r‖2 + (m− j + 1)‖q − s‖2

< ε ·
√
max{m,n} − j + 1.

�
However, inequality (7.1) does not guarantee the nearness θk(p, q) < ε, as shown

in an example in [10]. The actual distance θk(p, q) can nonetheless be calculated
during the subsequent computation to ensure finding the numerical GCD accurately.

Lemma 7.2. For a given (p, q) ∈ Pm,n and ε > 0, let (p̃, q̃) ∈ Pk
m,n be the

polynomial pair that defines gcd
ε
(p, q) = gcd (p̃, q̃) containing ũ with cofactors ṽ

and w̃. If [w;−v] ∈ Cn−k+1 × Cm−k+1 is the singular vector of Sk(p, q) with∥∥Sk(p, q)[w;−v]
∥∥ = σ−1

(
Sk(p, q)

)
, then σ−2

(
Sk(p̃, q̃)

)
�= 0 and the distance

(7.2) dist
(

span
{[

w
−v

]}
, span

{[
w̃
−ṽ

]})
<

2 ε
√
max{m,n} − k + 1

σ−2

(
Sk(p̃, q̃)

) .

Proof. From Lemma 3.1, we have σ−2

(
Sk(p̃, q̃)

)
�= 0. Consider the singular value

decomposition Sk(p̃, q̃) =
[
Ũ , z̃

][
Σ̃

0

][
Ṽ , ỹ

]∗
and let y = [w;−v]. We have∥∥Sk(p̃, q̃)y

∥∥ =
∥∥Σ̃Ṽ Hy

∥∥ ≥ σ−2

(
Sk(p̃, q̃)

)∥∥Ṽ Hy
∥∥ and∥∥Sk(p̃, q̃)y

∥∥ ≤
∥∥Sk(p, q)y

∥∥+ ∥∥Sk(p̃, q̃)− Sk(p, q)
∥∥ ‖y‖

< 2ε
√
max{m,n} − k + 1.

Therefore, the inequality (7.2) follows from the identity [14, Theorem 2.6.1]

dist
(

span
{[

w
−v

]}
, span

{[
w̃
−ṽ

]})
=

∥∥Ṽ Hy
∥∥.

�
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Lemma 7.1 provides mechanisms for identifying the numerical GCD degree
and numerical cofactor pair. When inequality (7.1) holds then it is possible to have
an numerical GCD degree k, and (v, w) can be extracted from the right singular
vector. The smallest singular value and the corresponding right singular vector can
be computed accurately and efficiently using a numerical rank-revealing iteration
[24, 41] in the following lemma.

Lemma 7.3. Under the assumptions of Lemma 7.1, assume the inequality
σ−2

(
Sk(p, q)

)
> 2ε

√
max{m,n} − k + 1 holds and Q · R is the QR decomposition

[14, §5.2] of Sk(p, q). Then, for almost all initial vector z0 of proper dimension, the
following iteration

(7.3)

⎧⎨
⎩

Solve RHyj = zj−1 by forward substitution
Solve R zj = yj by backward substitution
Normalize zj , for j = 1, 2, . . .

generates a sequence of unit vectors zj, j = 1, 2, . . . converging to z∗ and

(7.4) ‖Sk(p, q) z∗‖ = ‖R z∗‖ = σ−1

(
Sk(p, q)

)
at convergence rate

(7.5) ‖zj − z∗‖ ≤
[
σ−1

(
Sk(p, q)

)/
σ−2

(
Sk(p, q)

)]2j‖z0 − z∗‖

Proof. From σ−2

(
Sk(p, q)

)
> 2ε

√
max{m,n} − k + 1 and Lemma 7.1, we have

σ−1

(
Sk(p, q)

)
≤ ε

√
max{m,n} − k + 1 and

σ−2

(
Sk(p, q)

)
≥ σ−2

(
Sk(p, q)

)
− ε

√
max{m,n} − k + 1

> ε
√
max{m,n} − k + 1

and thus σ−1

(
Sk(p, q)

)/
σ−2

(
Sk(p, q)

)
< 1. The assertions of the lemma then

follows from [41, Lemma 2.6]. �
Equations in (7.4) implies z∗ is the vector [w;−v] in Lemma 7.2 containing

the coefficients of the numerical cofactors v and w. The next lemma provides an
error estimate for the initial approximation u of the numerical GCD from solving
the least squares solution to system (3.9).

Lemma 7.4. Under the assumptions of Lemma 7.1 and 7.2 with the same no-
tations along with μ ε denoting the right hand side of (7.2), let

ξ =
∥∥∥∥
[

Ck(ṽ)
Ck(w̃)

]∥∥∥∥, τ = ξ
∥∥∥∥
[

Ck(ṽ)
Ck(w̃)

]+ ∥∥∥∥,
and z = u be the least squares solution to

(7.6)
[

Ck(v)
Ck(w)

]
z =

[
p
q

]
.

If η = μτ
√
k + 1 ε < 1, then there is an α ∈ C \ {0} such that

(7.7)
∥∥∥ũ− αu

∥∥∥ ≡
∥∥∥ũ− αu

∥∥∥ ≤ τ
1−η

[√
k + 1 ‖ũ‖μ+ 1

ξ

]
ε

Proof. Let A =
[

Ck(ṽ)
Ck(w̃)

]
and b =

[
p̃
q̃

]
. The overdetermined linear system

Az = b has a conventional solution z = ũ. Due to (7.2), there is a γ ∈ C\{0} such
that ‖γ(v, w)− (ṽ, w̃)‖ ≤ μ ε‖(ṽ, w̃)‖. Rewrite the linear system (7.6) as[

Ck(γv)
Ck(γw)

]
(z/γ) =

[
p
q

]
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that can be considered as the perturbed system (A+ δA)(z+ δz) = b+ δb where

‖δA‖ =
∥∥∥[ Ck(γv − ṽ)

Ck(γw − w̃)

]∥∥∥ ≤
∥∥∥[ Ck(γv − ṽ)

Ck(γw − w̃)

]∥∥∥
F

≤
√
k + 1 ·

∥∥γ(v, w)− (ṽ, w̃)
∥∥ =

√
k + 1μ ε‖(ṽ, w̃)‖,

‖A‖ ≥ 1√
k + 1

‖A‖F =
1√
k + 1

√
k + 1 ‖(ṽ, w̃)‖ = ‖(ṽ, w̃)‖,

‖b‖ = ‖(p̃, q̃)‖, ‖δb‖ =
∥∥∥∥
[

p − p̃
q − q̃

]∥∥∥∥ ≤ ε, τ = ‖A‖
∥∥A+

∥∥ ,
Then inequality (7.7) follows from Theorem 1.4.6 and Remark 1.4.1 in [25, pp.
30-31], residual ‖Au− b‖ = 0 and α = 1/γ. �

Lemma 7.1 and Lemma 7.4 lead to the following lemma that ensures the initial
approximation of the numerical GCD and cofactors to be sufficiently accurate if the
perturbation to the polynomial pair (p, q) is small, satisfying the local convergence
condition of the Gauss-Newton iteration given in Lemma 9.1.

Lemma 7.5. Let (p̃, q̃) ∈ Pk
m,n and ũ ∈ gcd (p̃, q̃) with cofactor pair (ṽ, w̃).

Then for any δ > 0, there is an η > 0 such that for all (p, q) ∈ Pm,n with distance∥∥(p̃, q̃)− (p, q)‖ < η, the inequality
∥∥(ũ, ṽ, w̃)− ( 1γu, γv, γw)

∥∥ < δ holds for certain

γ ∈ C \ {0} where (u, v, w) is defined in Lemma 7.2 and Lemma 7.4 corresponding
to (p, q).

Proof. A straightforward verification using Lemmas 7.1, 7.2 and 7.4. �
In summary, to calculate the numerical GCD of a given polynomial pair (p, q)

within a prescribed threshold ε, we first identify the numerical GCD degree k.
Lemma 7.1 suggests that we can calculate the smallest singular value σ−1

(
Sj(p, q)

)
for j decreasing from min{m,n} = n until σ−1

(
Sj(p, q)

)
< ε

√
m− k + 1 and set

k = j. After k = deg
(

gcd
ε
(p, q)

)
is determined, the corresponding singular vector

of Sk(p, q) provides an approximation (v, w) to (ṽ, w̃) with error bound (7.2). An
approximation u to ũ ∈ gcd

ε
(p̃, q̃) is obtained by solving the overdetermined linear

system (7.6) for the least squares solution z = u with error bound (7.7). The
triplet (u, v, w) will be taken as an initial iterate for the Gauss-Newton iteration
(9.2) for verification and refinement.

8. Sensitivity of numerical GCD computation via Sylvester matrices

The sensitivity of the triplet (u, v, w) in Lemma 7.2 and Lemma 7.4 can be mea-
sured by the reciprocal of σ−2

(
Sk(p̃, q̃)

)
, as indicated by inequalities in (7.2) and

(7.7). In other words, computing the triplet (u, v, w) by iteration (7.3) in combina-
tion with solving the linear system (7.6) is ill-conditioned whenever σ−2

(
Sk(p̃, q̃)

)
is

tiny. Such ill-condition is certain to occur when the pair (p, q) ∈ Pk
m,n is also near

another GCD manifold Pj
m,n of higher GCD degree j. We can actually estimate

the magnitude of σ−2

(
Sk(p̃, q̃)

)
as follows.

Let (p̂, q̂) ∈ Pj
m,n with degree j > k and the distance

∥∥(p̃, q̃)−(p̂, q̂)
∥∥ = δ being

small. By Lemma 3.1, nullity (Sk(p̂, q̂) ) = j − k + 1 > 2. Similar to the proof of
Lemma 7.1,

σ−2

(
Sk(p̃, q̃)

)
≤ σ−2

(
Sk(p̂, q̂)

)
+ δ ·

√
max{m,n} − k + 1

= δ ·
√
max{m,n} − k + 1.
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Roughly speaking, the error of the numerical GCD triplet (u, v, w) computed as in
Lemma 7.2 and Lemma 7.4 is inversely proportional to the distance between the
polynomial pair (p̃, q̃) and the nearest GCD manifold of higher codimension. The
following is a typical example in which the polynomial pair is sensitive for computing
the initial numerical GCD approximation but well-conditioned if it is measured by
the GCD condition number.

Example 8.1. Consider the polynomial pair pμ = u · vμ and q = u · w where

u(x) = x2 + 1, vμ(x) = (x− 1 + μ)(x4 + 1), w(x) = (x− 1)(x3 − 2)

Clearly, (pμ, q) ∈ P2
7,6 with gcd (pμ, q) = u for all μ �= 0, but (pμ, q) is near P3

7,6

when μ is small. In fact, the distance θ3(pμ, q) between (pμ, q) and P3
7,6 is bounded

by ‖rμ‖ = 2μ for rμ = μ(x2 + 1)(x4 + 1). While σ−2

(
S2(pμ, q)

)
> 0 by Lemma 3.7

but the nullity of S2(pμ − rμ, q) is at least 2 since

(pμ − rμ) · (x3 − 1)− q · (x4 + 1) = 0, and

(pμ − rμ) · (x− 1)(x3 − 1)− q · (x− 1)(x4 + 1) = 0.

Hence σ−2

(
S2(pμ − rμ, q)

)
= 0. As a result,

σ−2

(
S2(pμ, q)

)
≤ ‖C6−2(rμ)‖F = 2

√
5μ,

and it is sensitive to compute the numerical GCD solely relying on Lemma 7.2
and Lemma 7.4. For instance, let μ = 10−12. A straightforward computation of
(ũ, ṽ, w̃) in Matlab by Lemma 7.2 and Lemma 7.4 results only three to four digits
accuracy:

ũ(x) ≈ x2 + 0.99992

ṽ(x) ≈ x5 − 0.9995x4 + x− 0.9995

w̃(x) ≈ x4 − 0.9995x3 − 2x+ 1.9991

It may seem to be a surprise that computing gcd
ε
(pμ, q) is not ill-conditioned even

if μ � 1. The numerical GCD condition number is nearly a constant of moderate
magnitude (≈ 3.55) for varying μ. Even for μ = 10−12, our software uvGCD

still calculates the numerical GCD with an accuracy around machine precision
(≈ 2.2 × 10−16). The reason for such a healthy numerical condition is revealed in
Lemma 4.1: Even though polynomials vμ and wμ are close to having a nontrivial
common factor (x − 1), the GCD triplet members u, vμ, and w as a whole are
not. �

The sensitivity analysis the example above show that, to ensure accuracy, it
is essential to refine the numerical GCD after obtaining an initial approximation
to the numerical GCD and cofactors. Such refinement can be carried out by the
Gauss-Newton iteration that is to be discussed in the next section.

9. Minimizing the distance to a GCD manifold

For a given polynomial pair (p, q) ∈ Pm,n with the degree k = deg
(

gcd
ε
(p, q)

)
of the numerical GCD being calculated from Lemma 7.1, finding its numerical GCD
and cofactors becomes the problem of minimizing the distance from (p, q) to the
GCD manifold Pk

m,n:∥∥(p, q)− (u · v, u · w)
∥∥ = min

(r,s)∈Pk
m,n

∥∥∥(p, q)− (r, s)
∥∥∥,
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where deg(u) = k, deg(v) = m− k and deg(w) = n− k. Naturally, this minimization
leads to the least squares problem for the quadratic system consists of

(9.1) Ck(v)u = p, Ck(w)u = q

which are the vector form of u·v = p and u·w = q respectively. However, the system
(9.1) is not regular since the least squares solutions are not isolated. Any solution
(u, v, w) can be arbitrarily scaled to (αu, v/α, w/α). A simple auxiliary equation
hHu = β takes away this dimension of the solution and ensures the Jacobian to be
injective.

We minimize the distance from a point (uv, uw) in the GCD manifold to the
give polynomial pair (p, q) by solving the system fh(u, v, w) = [β; p; q] as in (4.1)
for its least squares solution, where the function fh(u, v, w) is defined in (4.2). The
Gauss-Newton iteration (6.1) for finding u∗ ∈ gcd

ε
(p, q) and cofactors becomes

(9.2)

⎡
⎣ uj+1

vj+1

wj+1

⎤
⎦ =

⎡
⎣ uj

vj

wj

⎤
⎦− Jh(uj , vj , wj)

+

⎛
⎝fh(uj , vj , wj)−

⎡
⎣ β

p
q

⎤
⎦
⎞
⎠

for j = 0, 1, . . . where Jh(·, ·, ·) is the Jacobian of fh(·, ·, ·) given in (4.3). Lemma 4.1
ensures this iteration to be locally convergent for finding the least squares solution
(û, v̂, ŵ) to the system fh(u, v, w) = [β; p; q].

Lemma 9.1. For (p, q) ∈ Pm,n with numerical GCD u∗ ∈ gcd
ε
(p, q) and

cofactor pair (v∗, w∗), let h ∈ Ck+1 and β = hHu∗ �= 0. Define fh(·, ·, ·) as in (4.2).
There is a ρ > 0 such that, if

∥∥(u∗v∗, u∗w∗)− (p, q)
∥∥ < ρ, there exists a μ > 0 and

the Gauss-Newton iteration (9.2) converges to (u∗, v∗, w∗) from any initial iterate
(u0, v0, w0) satisfying hHu0 = β and

∥∥(u0, v0, w0)− (u∗, v∗, w∗)
∥∥ < μ.

Proof. The proof is a straightforward verification using Lemma 6.1. �.

10. The two-staged univariate numerical GCD algorithm

Based on the general analysis in previous sections, we present the algorithm
originally proposed in [41] for computing the numerical GCD triplet (u, v, w) of a
given polynomial pair (p, q) ∈ Pm,n within a given tolerance ε of backward error∥∥(p, q)− (uv, uw)

∥∥. The algorithm consists of two stages. At opening stage, we cal-
culate the degree k of the numerical GCD and an initial approximation (u0, v0, w0)
to (u, v, w). Then the Gauss-Newton iteration is applied to generate a sequence
(uj , vj , wj) such that (pj , qj) = (ujvj , ujwj) ∈ Pk

m,n converges to (p̃, q̃) that is the

nearest point on the manifold Pk
m,n to the given pair (p, q).

For simplicity, we assume polynomials p and q are arranged such that (p, q) ∈
Pm,n with m ≥ n in this section.

10.1. The numerical GCD degree and the initial GCD approxima-
tion. Let polynomials p and q be given along with backward error tolerance ε.
From Lemma 7.1, there are no numerical GCD’s of degree j within ε when the
smallest singular value

σ−1

(
Sj(p, q)

)
> ε

√
max{m,n} − j + 1 = ε

√
m− j + 1.
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The first stage of numerical GCD computation is to calculated σ−1

(
Sj(p, q)

)
for

j decreasing from min{m,n} = n through n − 1, n − 2, . . . to exclude the pos-
sibility of numerical GCD of those degrees. The process tentatively stops when
σ−1

(
Sk(p, q)

)
≤ ε

√
m− k + 1, pending certification at the refinement stage.

The full singular value decompositions of Sj(p, q)’s are unnecessary. Only the
smallest singular value and the associated right singular vector are needed for each
Sj(p, q). The iteration (7.3) is specifically designed for our purpose here. It requires
the QR decomposition QjRj = Sj(p, q). The straightforward computation of each
Rj requires O(j2n) floating point operations (flops), and the whole process may
require O(n4) which is unnecessarily expansive. A successive QR updating strategy
as follows substantially reduces the total flops to O(n3).

We first calculate the QR decomposition of Sn(p, q) =
[
C0(p)

∣∣Cm−n(q)
]
:

Sn(p, q) = QnRn, Rn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ . . . ∗

0
. . .

.

.

.

0
. . . ∗

.

.

. 0

.

.

.
.
.
.

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m×(m−n+2)

where each “∗” represents an entry that is potentially nonzero. When Sj(p, q)
is formed for j = n, n − 1, . . ., the Sylvester matrix Sj−1(p, q) is constructed by
appending a zero row at the bottom of Sj(p, q) followed by inserting two columns
[0; p] and [0; q]. By a proper column permutation Pj−1, these two columns are
shifted to the right side as the last two columns of Sj−1(p, q)Pj−1. Let initial column
permutation Pn = I. Then the QR decomposition Sn(p, q)Pn = QnRn is available.
If the QR decomposition Sj(p, q)Pj = QjRj is available for j = n, n − 1, . . ., the
expansion from Sj(p, q)Pj to Sj−1(p, q)Pj−1 can be illustrated as

Sj(p, q)Pj =

Rj

jQ jQ
1

Rj

= Sj−1(p, q)Pj−1

Accordingly, we update QjRj to Qj−1Rj−1 by eliminating the lower triangular
entries using the Householder transformation and obtain

(10.1) Sj−1(p, q)Pj−1 =

Rj+1

Q j+1

The total flops for decomposing all Sj(p, q)Pj = QjRj ’s is O(n3).
With the R = Rj at each QR update step, we apply the iteration (7.3) from

a randomly generated initial vector z0. Theoretically, there is a zero probability
that such z0 is perpendicular to the singular subspace span{y} and the condition for
convergence may not be satisfied. In practical floating point computation, however,
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the round-off error quickly destroys this orthogonality and the iteration always
converges. Moreover, when σ−1

(
Sj(p, q)

)
is near zero, the convergence rate (7.5)

in Lemma 7.3 is quite fast. If σ−1

(
Sj(p, q)

)
is, say, less than 10−3 of the second

smallest singular value every iteration step in (7.3) will produce 6 correct digits. It
rarely takes more than 3 to 5 iterations to reach a near zero σ−1

(
Sj(p, q)

)
.

According to (7.1) in Lemma 7.1, when σ−1

(
Sj(p, q)

)
< ε

√
m− j + 1 is

reached along with the singular vector y, the entries of y form v0 and w0 that
approximate the coefficients of cofactors v and w respectively with error bound
(7.2). By Lemma 7.4, an approximation u0 to the numerical GCD can be obtained
from solving the linear system

(10.2)
[

Cj(v0)
Cj(w0)

]
u0 =

[
p
q

]

with error bound (7.7).
The iteration (7.3) is applied at j = n, n−1, . . . , k, if the numerical GCD degree

is k. Each step in (7.3) requires O((n− j)2) flops. The total cost in calculating the
numerical GCD degree is no higher than O(n3). The system (10.2) costs O(n3) to
solve and it is to be solved only when a possible numerical GCD is detected.

Notice that, inequality σ−1

(
Sj(p, q)

)
≤ ε

√
m− j + 1 is not a sufficient condi-

tion for the given polynomial pair (p, q) to have a numerical GCD of degree k = j
within tolerance ε. Satisfying this inequality alone does not guarantee the exis-
tence of numerical GCD within ε. Even if the numerical GCD degree is found by
this inequality, the numerical GCD triplet (û, v̂, ŵ) may not be accurate enough.
An iterative refinement below verifies the numerical GCD degree and refines the
numerical GCD and cofactors.

10.2. Iterative refinement. After obtaining a possible numerical GCD de-
gree k, a GCD manifold Pk

m,n of codimension k is tentatively targeted for seeking
minimum distance to the given polynomial pair (p, q). Using the degree k, we
set the numerical GCD system fh(u, v, w) = [β; p; q] where fh is defined in (4.2)
with an objective in finding the least squares solution (u, v, w) with deg(u) = k,

(uv, uw) ∈ Pk
m,n, and

∥∥(uv, uw)− (p, q)
∥∥ = θk(p, q).

There are several choices for the scaling vector h. If the numerical GCD is
required to be monic, then h = [0; 0; . . . ; 1]. There is a drawback in this choice:
when leading coefficients of p and q are small, forcing u to be monic may cause
its remaining coefficients to be large in magnitude and creating unbalanced sys-
tem (4.2). A random vector as h can be a good choice, although there is a zero
probability that such h would make (4.2) singular, or a small probability that the
system is ill-conditioned. The most preferred choice appears to be a scalar multiple
of the initial approximation u0 of the numerical GCD determined by (10.2). This is
because u0 is close to the numerical GCD u as ensured by Lemma 7.4 when (p, q) is
near manifold Pk

m,n, and coefficient vector u0 cannot be perpendicular to u.
With the choice of scaling vector h = βu0 in (4.2) and the initial approximation

(u0, v0, w0) described in §10.1, the Gauss-Newton iteration (9.2) is applied and
iteration stops when the distance δj ≡ ‖ fh(uj , vj , wj)− [β; p; q] ‖ stops decreasing.

This refinement stage outputs the nearness ρ = δj and the refined numerical
GCD triplet (u, v, w). If ρ < ε, then the (u, v, w) is certified as numerical GCD
triplet for p and q. On the other hand, if the distance ρ ≥ ε, then the numerical
GCD degree k that is tentatively determined in §10.1 is incorrect and needs to be
adjusted downward by one.
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At each iteration step in (9.2), it is neither desirable nor necessary to con-
struct the Moore-Penrose inverse Jh(uj , vj , wj)

+ in explicit form. The new iterate
(uj+1, vj+1, wj+1) is obtained via solving a linear least squares problem{

Solve Jh(uj , vj , wj)(Δz) = fh(uj , vj , wj)− [β; p; q] for Δz
Set [uj+1;vj+1;wj+1] = [uj ;vj ;wj ]−Δz.

While solving Jh(uj , vj , wj)(Δz) = fh(uj , vj , wj) − [β; p; q] for its least squares
solution, the QR decomposition of Jh(uj , vj , wj) = QR is obtained. Upon exit-
ing the iteration (9.2), the final upper triangular matrix R can replace the Rj in
(7.3) to calculate the smallest singular value of Jh(uj , vj , wj). The reciprocal of
this singular value is the GCD condition number of the polynomial pair (p, q) and
the computed numerical GCD triplet (u, v, w). Calculating the condition number
requires negligible flops.

The Gauss-Newton iteration here is crucial for its two-fold purpose:

Verifying the numerical GCD. By minimizing the residual ρ = ‖ fh(u, v, w) −
[β; p; q] ‖, the Gauss-Newton iteration either certifies the numerical GCD
triplet (u, v, w) from verifying ρ < ε, or disqualify k as the numerical
GCD degree when ρ ≥ ε. In the latter case the process of computing
σ−1

(
Sj(p, q)

)
needs to be continued for decreased j by one.

Refining the numerical GCD triplet. The Gauss-Newton iteration filters out
the error bounded by (7.2) and (7.7), obtaining the numerical GCD to the
optimal accuracy bounded by (6.4).

10.3. The main algorithm and its convergence theorem. In summary,
the overall algorithm for finding a numerical GCD of a polynomial pair within a
tolerance ε is described in the following pseudo-code, which contains two exit points.

Algorithm uvGCD

• Input: Pair (p, q) ∈ Pm,n with m ≥ n ,backward nearness tolerance ε.
• Initialize permutation Pn = I and QR decomposition Sn(p, q)Pn = QnRn,
• For j = n, n− 1, . . . , 1 do

– Apply iteration (7.3) on R = Rj and obtain the smallest singular
value σ−1

(
Sj(p, q)

)
≡ σ−1

(
Sj(p, q)Pj

)
and corresponding singular

vector y = Pj [w0; −v0] of Sj(p, q)Pj.
– If σ−1

(
Sj(p, q)

)
< ε

√
m− j + 1 then

∗ Set GCD degree as k = j, extract v0 and w0 from y =
Pj [w0; −v0], and compute an initial approximation u0 to the
numerical GCD by solving (10.2).

∗ Set up fh(·, ·, ·), Jh(·, ·, ·) as in (4.2) and (4.3) with k = j and
the scaling vector h = βu0 for β = 1. Apply the Gauss-Newton
iteration (9.2) with initial iterate (u0, v0, w0) and terminate the
iteration at the triplet (u, v, w) = (ul, vl, wl) when the residual
δl = ‖fh(ul, vl, wl)− [β; p; q]‖ stops decreasing; set ρ = δl.

∗ If ρ < ε, then break the do-loop, end if
end if

– Update Sj−1(p, q)Pj−1 = Qj−1Rj−1 as in (10.1).
end do

• Output GCD triplet (u, v, w) if ρ < ε, or trivial GCD triplet (1, p, q) if
ρ ≥ ε.
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The following is the Numerical GCD Convergence Theorem for the numerical
GCD algorithm. The theorem asserts that Algorithm uvGCD converges to a nu-
merical GCD and cofactors that can be arbitrarily accurate if the given polynomial
pair is within a sufficiently small perturbation.

Theorem 10.1 (Numerical GCD Convergence Theorem). Let (p̂, q̂) be any
polynomial pair in Pk

m,n. Then for every δ > 0, there is an η > 0 such that, if
input items (p, q) ∈ Pm,n and ε > 0 satisfy

‖(p, q)− (p̂, q̂)‖ < η < ε < θk+1(p̂, q̂)− η,

there is a unique numerical GCD gcd
ε
(p, q) = gcd (p̃, q̃) with (p̃, q̃) ∈ Pk

m,n satis-
fying ‖(p̃, q̃) − (p̂, q̂)‖ < δ. Moreover, Algorithm uvGCD generates a sequence of
polynomial triplets (uj , vj , wj) satisfying

lim
j→∞

uj = u ∈ gcd
ε
(p, q) and lim

j→∞

∥∥(ujvj , ujwj)− (p̃, q̃)
∥∥ = 0

Proof. Assume m > n without loss of generality. From deg
(

gcd (p̂, q̂)
)
= k,

we have θk+1(p̂, q̂) > 0 and we can choose a η1 with 0 < η1 < θk+1(p̂, q̂)/2. If
‖(p, q)− (p̂, q̂)‖ < η1 and η1 < ε < θk+1(p̂, q̂)− η1, then

σ−1

(
Sk(p, q)

)
< η1

√
m− k + 1 < ε

√
m− k + 1

by Lemma 7.1 and the Gauss-Newton iteration (9.2) will be initiated at certain
j ≥ k. For any j > k, the distance θj(p, q) ≥ θk+1(p, q) ≥ θk+1(p̂, q̂) − η1 > ε.
Consequently the Gauss-Newton iteration either diverges or converges to a point
with residual larger than ε. As a result, Algorithm uvGCD will not be terminated
at j > k.

From ‖(p, q) − (p̂, q̂)‖ < η1 and η1 < ε < θk+1(p̂, q̂) − η1, Pk
m,n is the GCD

manifold of highest codimension within ε of (p, q), namely

k = codim
(
Pk

m,n

)
= max

0≤j≤n

{
codim

(
Pj

m,n

)∣∣θj(p, q) < ε
}
.

Clearly, θk(p, q) ≤ η1 < ε is attainable at certain (p̃, q̃) ∈ Pk
m,n. Consequently, the

unique numerical GCD gcd
ε
(p, q) exists and is identical to the exact GCD of (p̃, q̃).

Let û ∈ gcd (p̂, q̂). For any fixed h ∈ Ck+1 with hH ˆ̂u �= 0, let (û, v̂, ŵ) be the
unique solution to the equation fh(u, v, w) = [1; p̂; q̂]. By Lemma 6.1, there is a
neighborhood Δ of (û, v̂, ŵ) and a neighborhood Σ of (p̂, q̂) such that for all (p, q) ∈
Σ, the Gauss-Newton iteration on the system fh(u, v, w) = [1, p, q] converge to the
least squares solution (u∗, v∗, w∗) from any initial iterate (u0, v0, w0) ∈ Δ. By
Lemma 7.5, there is an η2 > 0 such that (u0, v0, w0) ∈ Δ and (p, q) ∈ Σ whenever
‖(p, q)−(p̂, q̂)‖ < η2. Set η = min{η1, η2}, the conclusion of the theorem follows. �

11. Computing experiment and benchmark

Our method is implemented as a package uvGCD in Maple and Matlab. In
addition to a symbolic GCD-finder gcd, there are three numerical GCD finders in
the SNAP package [17] in Maple: QuasiGCD [2], EpsilonGCD [2], andQRGCD

[7]. Among themQRGCD is clearly superior to the other two by a wide margin. We
thereby compare uvGCD with QRGCD and gcd only. Actually, QuasiGCD and
EpsilonGCD output failure messages for all the test examples in this section.

All test results are obtained on a desktop PC with an Intel Pentium 4 CPU
of 1.8 MHz and 512 Mb memory. Unless mentioned specifically (Example 4), both
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uvGCD and QRGCD are tested in Maple 9 with precision set to 16 digits to
simulate hardware precision.

We believe that numerical GCD finders should be tested and compared based
on results from the following aspects.

(1) Performance on polynomials with increasing numerical GCD sensitivity.
(2) Performance on polynomial having different numerical GCD’s within dif-

ferent tolerance.
(3) Performance on numerical GCD’s of large degrees.
(4) Performance on polynomials with large variation in coefficient magnitudes.
(5) Performance in finding the numerical GCD of (p, p′) when p has roots of

high multiplicities.

We have established a test suite that includes polynomials satisfying the above
requirements along with those collected from the literature. We demonstrate the
robustness and accuracy of uvGCD with sample results below.

Test 1: A high sensitivity case. For an even number n and k = n/2, let pn =
un vn and qn = un wn, where

un =

k∏
j=1

[
(x− r1αj)

2 + r21β
2
j

]
, vn =

k∏
j=1

[
(x− r2αj)

2 + r22β
2
j

]
,

wn =

n∏
j=k+1

[
(x− r1αj)

2 + r21β
2
j

]
, αj = cos

jπ

n
, βj = sin

jπ

n

for r1 = 0.5, r2 = 1.5. The roots of pn and qn spread on the circles of ra-
dius 0.5 and 1.5. When n increases, the GCD condition number grows quickly. Table
1 shows that error on the computed numerical GCD.

n condition QRGCD uvGCD
number error error

n = 6 566.13 0.55× 10−14 0.15× 10−14

n = 10 742560.0 0.18× 10−11 0.47× 10−12

n = 16 0.33× 1011 0.18× 10−4 0.65× 10−9

n = 18 0.17× 1013 FAIL 0.53× 10−5

n = 20 0.71× 1014 FAIL 0.99× 10−6

Table 1. Comparison in Test 1

Test 2: Multiple numerical GCD’s. Let

p(x) =
∏10

j=1(x− xj), with xj = (−1)j
(
j
2

)
q(x) =

∏10
j=1

[
x− xj + 10−j

]
The roots of q have decreasing distances 0.1, 0.01, . . . with those of p. Therefore
there are different numerical GCD’s for different tolerances. As shown in Table 5.2,
uvGCD accurately separates the numerical GCD factors according to the given
tolerance on the listed cases.

Test 3: numerical GCD of large degrees. For fixed cofactors v(x) =∑3
j=0 x

j and w(x) =
∑4

j=0(−x)j , let pn = un v and qn = un w with un being a

polynomial of degree n of random integer coefficients in [−5, 5]. For the sequence
of polynomial pairs (pn, qn), the GCD is known to be un and we can calculate the
actual accuracy. As shown in Table 11, uvGCD maintains its robustness and high
accuracy even when for n reaches 2000, while QRGCD works for n < 100.
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tolerance degree (& nearness) of numerical GCD found by
ε QRGCD uvGCD

10−2 7 (0.0174) 9 (0.56E-02)
10−3 Fail 8 (0.26E-03)
10−4 Fail 7 (0.14E-04)
10−5 Fail 6 (0.11E-05)
10−6 Fail 5 (0.41E-07)
10−8 Fail 4 (0.42E-08)
10−9 Fail 3 (0.14E-09)
10−10 Fail 2 (0.24E-10)

Table 2. The calculated degrees (and nearness in parentheses) of numerical
GCD within various tolerance on Test 2.

GCD coefficient-wise error on computed numerical GCD
degree QRGCD uvGCD

n = 50 0.168E-12 0.500E-15
n = 80 0.927E-12 0.805E-15
n = 100 Fail 0.341E-15
n = 200 Fail 0.100E-14
n = 500 Fail (*) 0.133E-14
n = 1000 Fail (*) 0.178E-14
n = 2000 Fail (*) 0.178E-14

Table 3. Coefficient errors on random numerical GCD’s of degree n. (*): Pre-
sumably failed after running hours without results.

Test 4: A case where computing numerical GCD by uvGCD is faster
than calculating GCD by Maple. For polynomials with integer coefficients,
Maple’s symbolic GCD finder is often faster than uvGCD. However, uvGCD can
be substantially more efficient in other cases. Here is an example. For fixed cofac-
tors v and w as in Test 3, let un be the polynomial of degree n with random rational
coefficients and

(11.1) pn = un v, , qn = un w.

The GCD is a multiple of un. We compare the Maple gcd on exact coefficients with
our Matlab uvGCD on approximate coefficients. Table 4 shows the running time on
increasing n. In this polynomial series, not only uvGCD is faster, the speed ratio
of uvGCD over gcd increases from 2 to 11 when n increases from 50 to 2000. Of
course, this result should be taken with caution because Maple GCD always has
zero error.

Maple gcd uvGCD

time error time error

n = 50 0.25 0 0.125 3.53e-15
n = 200 7.47 0 2.437 8.69e-14

n = 1000 574.90 0 82.270 1.64e-13
n = 2000 10910.60 0 969.625 1.82e-12

Table 4. Comparison between Maple’s symbolic gcd and uvGCD on polynomial
pairs (pn, qn) in (11.1)
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Figure 1. Accuracy comparison on 100 polynomial pairs in Test 4. The height
of each point is the number of correct digits approximating the numerical GCD
coefficients by uvGCD or QRGCD at each polynomial pair.

Test 5: Numerical GCD with large variation in coefficient magni-
tudes. For fixed v and w as in Test 3, let

u(x) =

15∑
j=0

cj 10
ejxj

where for every j, cj and ej are random integers in [−5, 5] and [0, 6] respectively. The
polynomial pair p = u v and q = uw are then constructed while QRGCD and
uvGCD are called to find the numerical GCD of (p, q). Notice that u is the known
GCD whose coefficient jumps between 0 and 5× 106 in magnitude. After applying
the numerical GCD finders on each pair (p, q), we calculated the coefficient-wise
relative errors θ and ϑ of QRGCD and uvGCD respectively. Roughly speak-
ing, − log10 θ and − log10 ϑ are the minimum number of correct digits obtained for
approximating coefficients of u by QRGCD and uvGCD respectively. This test is
repeated 100 times. Figure 1 shows that on average QRGCD gets about 8 digits
correct on each coefficient, while uvGCD attains about 11.

Figure 2 shows the difference in the number of correct digits obtained on coef-
ficients from each test. On those 100 tests, uvGCD obtains up to 6.5 more correct
digits than QRGCD on 99 test, while slightly less accurate than QRGCD on only
one polynomial pairs (i.e. the test 70).

Test 6: GCD of p and p′. Let p be

p(x) = (x− 1)m1(x− 2)m2(x− 3)m3(x− 4)m4

for different sets of m1,m2,m3,m4. Finding the numerical GCD of p and p′ may
be difficult for some numerical GCD finders, as shown in Table 5 for QRGCD and
[30]. This numerical GCD computation has an important application in polynomial
root-finding. On the other hand, uvGCD is originally built for this purpose and
shows its tremendous robustness.
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Figure 2. Accuracy comparison on 100 polynomial pairs in Test 4. The vertical
axis is the difference in the number of correct digits approximating the numerical
GCD coefficients by uvGCD or QRGCD at each test.

coefficient-wise relative error
[m1,m2,m3,m4] Maple Maple

QRGCD gcd uvGCD

[2, 1, 1, 0] 1.0E-13 1.0e-16 6.7E-16
[3, 2, 1, 0] 1.5E-12 1.0e-16 1.8E-14
[4, 3, 2, 1] 1.6E-07 1.0e-16 4.5E-14
[5, 3, 2, 1] Fail 3.5e-16 4.6E-13
[9, 6, 4, 2] Fail Fail(*) 3.5E-12

[20, 14, 10, 5] Fail Fail(*) 1.7E-12
[80, 60, 40, 20] Fail Fail(*) 3.5E-11

[100, 60, 40, 20] Fail Fail(*) 2.6E-11

Table 5. Comparison on gcd (p, p′) for p in Test 5.
(*): Symbolic gcd fails because p is no longer exact.
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